АНАЛИЗ ТЕХНОЛОГИИ ВЫПЛАВКИ ШАРИКОПОДШИПНИКОВОЙ СТАЛИ - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

АНАЛИЗ ТЕХНОЛОГИИ ВЫПЛАВКИ ШАРИКОПОДШИПНИКОВОЙ СТАЛИ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Цель работы ― углублённое изучение теории и технологии выплавки специальных сталей и сплавов на основе анализа и обобщения научно-технической литературы и специализированных журналов и изданий.

В данной работе будут рассмотрены следующие вопросы:

  1. Современное состояние и проблемы отечественной и зарубежной металлургической промышленности, а также возможные пути их преодоления и дальнейшего развития отрасли.

  2. Назначение, область применения шарикоподшипниковой стали марки ШХ4, а также сталей аналогичных марок, а также требования, предъявляемые к ним.

  3. Сделан обзор существующих методов производства шарикоподшипниковых сталей.

  4. Рассмотрены способы улучшения существующих технологий производства подшипниковых сталей, а также направления и тенденции в создании новых технологических схем и процессов в отечественной и зарубежной подшипниковой промышленности.

Шарикоподшипниковую сталь применяют главным образом для изготовления шариков, роликов и колец подшипников. Но номенклатура марок стали данного вида достаточно широка. Это объясняется разнообразием требований к эксплуатационным свойствам подшипников со стороны традиционных, а также новых отраслей промышленности и сельского хозяйства.

Выбор стали для конкретного подшипника диктуется его размерами и условиями эксплуатации.

Из хромистой и хромомарганцевокремнистой сталей изготовляют подшипники, работающие в интервале температур 60 – 3000С. Эксплуатация подшипников при температуре, превышающей 1000С, требует специальной термической обработки деталей, обеспечивающей стабильность размеров, но сопровождающейся снижением твёрдости, а также сопротивления контактной усталости стали.

В связи с внедрением прогрессивной технологии термической обработки деталей железнодорожных подшипников качения – поверхностной закалки при глубинном индукционном нагреве – разработана сталь ШХ4 с регламентированной прокаливаемостью. По составу она отличается от стали ШХ15 пониженным содержанием элементов, влияющих на прокаливаемость стали, - марганца, кремния и хрома.

Кроме изготовления деталей подшипников сталь ШХ15, например, также применяется также для производства игл распылителей форсунок, обратных клапанов и подушек впрыскивающих систем, валиков топливных насосов, роликов, осей различных рычагов и других деталей, от которых требуется высокая твёрдость и хорошее сопротивление износу.

Наиболее распространёнными способами производства шарикоподшипниковых сталей являются: основной мартеновский, кислый мартеновский и электродуговой. Полагали, что в электропечи может быть выплавлен первосортный металл даже из относительно загрязнённых серой и фосфором материалов. Поэтому на заводах, на которых исходные материалы загрязнены серой и фосфором выше нормы, единственным агрегатом для выплавки первосортной стали была признана электропечь.

Как в случае выплавки в электропечи, так и в случае мартеновской плавки возможно применение обработки металла в ковше синтетическими известково-глинозёмистыми шлаками.

Другим направлением, по которому совершенствовалось качество отечественной подшипниковой стали, являлась технология рафинирующих переплавов – вакуумно-дугового, электрошлакового, плазменного и электроннолучевого. Рафинирующие переплавы являются очень эффективными: благодаря принципиальному изменению процесса кристаллизации стали увеличилась плотность слитка, снизилось общее содержание газов, примесей, неметаллических включений и уменьшились размеры последних в слитке.

Новым направлением, развиваемым в последние годы в отечественной промышленности при выплавке стали в открытых дуговых электропечах, явилось внепечное вакуумирование в ковше, в установках циркуляционного или порционного вакуумирования, вакуум-шлаковой обработки (УВСШ).

За рубежом совершенствование процесса производства стали для подшипников массового и, частично, специального применения пошло по пути внепечного вакуумирования. Сталь для особо ответственных подшипников выплавляют методами вакуумной индукционной выплавки, вакуумно-дугового переплава, электроннолучевой плавки, плазменного и электрошлакового переплава.

Рассмотрим некоторые печи.

Весьма ограниченный объём производства кислых мартеновских сталей типа ШХ15 объясняется особенностями её производства: топливо и шихтовые материалы при кислом процессе должны иметь низкое содержание серы и фосфора, так как эти элементы при выплавке не удаляются из стали.

При отсутствии чистых руд возможен вариант, когда сначала выплавляют специальную заготовку в основных мартеновских печах, а затем переплавляют её в кислых. Несмотря на высокие эксплуатационные свойства получаемой стали, этот процесс является экономически не выгодным.

В кислой печи шарикоподшипниковую сталь можно выплавлять активным или кремневосстановительным процессом. Если по мере расплавления в печь не вводят никаких добавок, то по мере повышения температуры металла шлак насыщается кремнезёмом вследствие окисления кремния, восстанавливающегося из подины. Вязкость шлака увеличивается, а скорость перехода кислорода из атмосферы печи через шлак снижается. На определённой стадии плавки начинает превалировать процесс восстановления кремния, увеличивается его концентрация в металле. Этот процесс называют кремневосстановительным. Таким способом производят подшипниковую сталь на заводах фирмы SKF в Хеллефорсе. Выплавку ведут в кислых мартеновских печах ёмкостью 30-120т. Футеровку этих печей выполняют из чистых силикатных материалов, содержащих около 97% SiO2. шихту составляют из жидкого чугуна (50%), губчатого железа (30%), и отходов подшипниковой стали (20%). Содержание серы и фосфора в стальной ванне после расплавления низкое, что объясняется, прежде всего, очень высокой чистотой добываемой железной руды, из которой изготавливаются губчатое железо и чугун. Окисление осуществляется кислородом. Ни в печь до выпуска, ни в ковш во время выпуска не добавляются ни силикокальций, ни алюминий.

Активный процесс характеризуется тем, что руду, известь (или известняк) вводят по ходу плавки. Это повышает жидкоподвижность шлака, ограничивает восстановление кремния и увеличивает его окислительную способность. Происходит интенсивное кипение, содержание кремния не превышает 0,10-0,12%. В качестве шихтовых материалов используются чистый по сере и фосфору чугун, специальная шихтовая болванка и до 10% от садки собственные отходы шариковой стали.

Специальная болванка выплавляется в основных мартеновских печах. В материале её содержится до 0,015%S и до 0,017%P.

Окончательное раскисление поводят в печи силикокальцием (1,26кг/т) и кусковым алюминием (0,4 кг/т), присадку раскислителей заканчивают до появления шлака.

В последние годы находит применение также активный процесс с последующей обработкой металла в ковше синтетическим известково-глинозёмистым шлаком следующего состава: 52-55% CaO, 38-42% Al2O3, до 3% SiO2, до 0.5% FeO, до 1.5% TiO2.

2.3 Выплавка в электродуговых печах.

Подшипниковую сталь выплавляют по двум технологическим схемам – с обработкой печным шлаком и с обработкой металла в ковше высокоглинозёмистым синтетическим шлаком, получаемым в отдельной печи.

В зависимости от применяемой шихты по обоим технологическим вариантам выплавка может производиться методом переплава или на свежей шихте. При выплавке стали методом переплава с обработкой печным шлаком используются от 70 до 100% отходов подшипниковых сталей. Окончательное раскисление проводят печным кусковым алюминием путём присадки его в печь за 5 минут до выпуска (0,5 кт/т стали). При выплавке на свежей шихте с обработкой печным шлаком используют углеродистый лом (74-77%), чугун (18-21%), и отходы подшипниковой стали (4,5%). Окончательное раскисление металла производят первичным алюминием в количестве 0,5 кг/т в ковш и 0,5 кг/т в ковш.

Высокоглинозёмистым синтетическим шлаком может обрабатываться сталь, выплавленная как на свежей шихте, так и методом переплава. Физико-химические процессы, протекающие в ковше при взаимодействии жидкой стали с жидкими известково-глинозёмистыми синтетическими шлаками, в основном сводятся к тому, что при сливе жидкого металла с достаточно большой высоты в ковш происходит их интенсивное перемешивание и взаимное эмульгирование. Поверхность контакта металла и шлака при их взаимном эмульгировании чрезвычайно увеличена по сравнению с обычным способом рафинирования металла в печи.

В последние годы исследования направлены на снижение основности рафинировочного шлака. Применение шлаков пониженной основности, полукислых и кислых шлаков продиктовано стремлением приблизить состав включений в основной электродуговой стали к составу их в кислой мартеновской или кислой индукционной сталях.

При таких процессах должно снижаться число крупных глобулярных включений, но повышаться число сульфидных и, возможно, силикатных включений. При рафинировании стали кислыми шлаками превалирующим видом кислородных включений становятся тонкие строчки мелких зёрен корунда.

Выбор и рекомендации по использованию новых прогрессивных разработок в технологии выплавки шарикоподшипниковых сталей.

Постоянно растущие требования к качеству стали могут сыть удовлетворены лишь при производстве металла с низкими содержаниями серы, кислорода, водорода и неметаллических включений. Но это связано со значительными трудностями: лишь способ обработки, получивший название ASEA-SKF (по названию двух разработавших его шведских фирм), позволяет комплексно рафинировать сталь, но это весьма дорогой и трудоемкий процесс.

УкрНИИспецсталью совместно с заводом «Днепроспецсталь» и другими организациями разработаны способ и устройства для вакуумирования стали с одновременной обработкой в столбе синтетического шлака (УВСШ). Способ позволяет вакуумировать сталь в широком диапазоне, сочетая преимущества процессов вакуумирования и обработки металла синтетическим шлаком при сравнительно невысоких затратах.

Сущность способа состоит в следующем: металл, выплавленный в сталеплавильном агрегате, подвергается вакуумированию в струе, а затем рафинируется в шлаке, проходя через столб шлакового расплава высотой свыше 3м. Столб шлака формируется за счёт разности атмосферного и остаточного давления в вакуумной камере. Количество шлака определяется барометрической высотой и поперечным сечением шлакового столба. Схема выплавки металла с вакуумшлаковой обработкой приведена на рисунке 3.

Следуя схеме, металл из сталеплавильного агрегата поступает в передаточный ковш, который устанавливается на вакуум-камеру, после чего начинается донный выпуск с дегазацией металла в струе. Распылённый металл стекает на дно вакуум-камеры и попадает в шлаковый рукав, заполненный шлаком, и, спускаясь сквозь слой шлака вниз, рафинируется. В вакуумную камеру шлак поступает из приёмного ковша шлакоплавильной печи. Под шлаковым рукавом располагается приёмный ковш, из которого металл поступает непосредственно на разливку, которая производится либо в изложницы, либо, что предпочтительнее, в машину непрерывного литья заготовок.

Проанализировав весь рассмотренный материал можно сделать следующие выводы:

  1. Необходимо совершенствование критериев оценки качества металла и готовых изделий, а также повсеместное применение неразрушающих методов контроля.

  2. Необходимо разработать и применять единую методику для оценки эксплуатационных свойств подшипниковых сталей, согласованную между представителями металлургической и подшипниковой промышленности.

  3. Наиболее перспективными в плане повышения качества стали в настоящее время являются специальные способы производства (ЭШП, ВДП, ЭЛП, ВСШ и др.).

Просмотров работы: 339