МАТЕМАТИКО-КАРТОГРАФИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДЛЯ РАСЧЕТА КОМПЛЕКСА ПРИРОДООХРАННЫХ МЕРОПРИЯТИЙ - Студенческий научный форум

VI Международная студенческая научная конференция Студенческий научный форум - 2014

МАТЕМАТИКО-КАРТОГРАФИЧЕСКОЕ МОДЕЛИРОВАНИЕ ДЛЯ РАСЧЕТА КОМПЛЕКСА ПРИРОДООХРАННЫХ МЕРОПРИЯТИЙ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

В последнее время в гидрологии, как и в других областях естествознания, при внедрении компьютерных технологий для решения инженерных и научных задач широко применяются математико-картографические методы моделирования.

Использование этих методов позволяет прогнозировать важные, а порой и опасные для жизни человека явления, такие как паводки, границы распространение загрязняющих веществ и т.д. Также с их помощью можно определять различные показатели продуктивности рыбных хозяйств, необходимые мелиоративные работы, характеристики водного потока для гидроэнергетики и т.д.

Математико-картографическое моделирование - это «построение и анализ математических моделей по данным, снятым с карты (карт), создание новых производных карт на основе математических моделей. Для МКМ характерно системное сочетание математических и картографических моделей, при котором образуются цепочки и циклы: карта - математическая модель - новая карта - новая математическая модель и т.д.».

Процесс моделирования включает три элемента: субъект (исследователь), объект исследования, модель, определяющую (отражающую) отношения познающего субъекта и познаваемого объекта.

Первый этап построения модели предполагает наличие некоторых знаний об объекте-оригинале. Познавательные возможности модели обусловливаются тем, что модель отображает (воспроизводит, имитирует) какие-либо существенные черты объекта-оригинала. Вопрос о необходимой и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от исследования других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько «специализированных» моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение «модельных» экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее «поведении». Конечным результатом этого этапа является множество (совокупность) знаний о модели.

На третьем этапе осуществляется перенос знаний с модели на оригинал - формирование множества знаний. Одновременно происходит переход с «языка» модели на «язык» оригинала. Процесс переноса знаний проводится по определенным правилам. Знания о модели должны быть скорректированы с учетом тех свойств объекта-оригинала, которые не нашли отражения или были изменены при построении модели.

Четвертый этап - практическая проверка получаемых с помощью моделей знаний и их использование для построения обобщающей теории объекта, его преобразования или управления им.

Моделирование - циклический процесс. Это означает, что за первым четырех этапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется.

Математико-картографическое моделирование позволяет нам рассчитывать значения какого-то показателя или явления на всей исследуемой территории на основе дискретно распределенных данных. Для этого используются различные методы геостатистического анализа, в основе которого лежит интерполяция, экстраполяция, аппроксимация данных и различные способы картографического изображения, которые основаны на классификации данных.

Моделирование позволяет на основе разных факторов осуществлять комплексную оценку территории для ее пригодности под определенные поставленные задачи, проводить районирование, ранжирование и кластеризацию. Моделирование на основе разновременных данных позволяет нам оценить динамику развития какого-либо явления и дать качественный прогноз.

Любой водный объект и его режим могут быть описаны с помощью определённого набора гидрологических характеристик, которые можно разделить на несколько групп.

1. Характеристики водного режима: уровень воды (H, м в Балтийской системе высот (БС) или см над 0 поста), скорость течения (v, м/с), расход воды (Q, м3/с), сток воды за интервал времени ∆t (W, м3, км3), уклон водной поверхности (I, величина безразмерная) и т.д.

2. Характеристики теплового режима: температура воды, снега, льда (T, оC), теплосодержание водного объекта или тепловой сток за интервал времени ∆t (Θ, Дж) и т.д.

3. Характеристики ледового режима: сроки наступления и окончания различных фаз ледового режима (замерзания, ледостава, таяния, вскрытия, очищения ото льда), толщина ледяного покрова, сплочённость льдов и т.д.

4. Характеристики режима наносов: содержание в воде взвешенных наносов или мутность воды (s, кг/м3), расход наносов (R, кг/с), распределение наносов по фракциям (крупности) и т.д.

5. Характеристики формы и размера водного объекта: его длина (L, м, км), ширина (B, м, км), глубина (h, м) и т.д.

Кроме того, к числу гидрологических обычно относят такие очень важные для описания любого водного объекта характеристики, как гидрохимические - минерализацию воды (M, мг/л) или её солёность (S, ‰), содержание отдельных ионов солей, газов, загрязняющих веществ и др.; гидрофизические - плотность воды (ρ, кг/м3), вязкость воды и др.; гидробиологические - состав и численность водных организмов (экз/м2) и величину биомассы (г/м3, г/м2) и др.

Совокупность гидрологических характеристик данного водного объекта в данном месте и в данный момент времени определяет гидрологическое состояние водного объекта.

Географические информационные системы находят все более широкое применение в гидрологии как для выполнения оперативных расчетов и оценки водных ресурсов, так и для изучения гидрологического режима водных объектов. Многие проблемы сбора, обработки и интерпретации данных, проектирования гидрологических сетей и подготовки предложений для принятия решений при широком использовании ГИС-технологии и персональных компьютеров могут разрешаться легче и эффективнее, чем это было до сих пор в гидрологической практике. Возможность ГИС-технологии оперативно представлять на цифровых или бумажных картах водные объекты совместно с их гидрографическими характеристиками, гидрологическими постами и данными измерений позволяет оперативно проводить автоматизированный комплексный анализ и интерпретацию материалов наблюдений для получения подробной картины происходящих процессов.

Для решения задач пространственного и статистического анализа в ГИС имеется богатый набор инструментов. Они позволяют строить буферные зоны и зоны охвата, определять расстояния, получать геометрические характеристики объектов (длина, площадь), проводить различные пространственные и атрибутивные выборки (на основе SQL-запросов), делать операции оверлея (наложения слоев) и др. Это наиболее важные функции ГИС, и от их эффективности напрямую зависит эффективность и полезность самих ГИС.

Математико-картографическое моделирование использовано нами для расчета комплекса природоохранных мероприятий.

Просмотров работы: 2317