ПРИНЦИПЫ ПОСТОРОЕНИЯ ВИХРЕТОКОВЫХ МЕТАЛЛОИСКАТЕЛЕЙ - Студенческий научный форум

VI Международная студенческая научная конференция Студенческий научный форум - 2014

ПРИНЦИПЫ ПОСТОРОЕНИЯ ВИХРЕТОКОВЫХ МЕТАЛЛОИСКАТЕЛЕЙ

Ермошин Н.И. 1
1Национальный Исследовательский Томский Политехнический Университет Институт Неразрушающего Контроля
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

При первой же попытке провести классификацию детекторов металлических предметов можно сделать безошибочный вывод о том, что в настоящее время существует довольно значительное число базовых принципов, основанных на разных физических явлениях, положенных в основу самых разнообразных конструкций.

Следует отметить, что в последнее время в связи с развитием элементной базы появилась возможность практической реализации идей, воплощение которых ранее считалось маловероятным.

1.1 Металлоискатели с использованием одного автогенератора

Развитие измерительной электронной техники, и особенно, со встроенными микропроцессорами, теперь позволяет по-другому взглянуть на металлоискатели, принцип действия которых основан на измерении ухода частоты измерительного колебательного контура. Современные технические средства позволяют реализовать компактный прибор, позволяющий в реальном масштабе времени оценивать с высокой точностью небольшие девиации частоты измерительного генератора. И хотя построенный по такому принципу электронный металлоискатель является несомненным родственником прибора "на биениях", он заслуживает выделения в отдельный класс приборов, которые можно назвать металлоискателями по принципу частотомера. Приборы такого класса, помимо массы сервисных возможностей микропроцессорной реализации, обладают еще одним принципиальным отличием от простейших приборов "на биениях" – возможностью оценки знака приращения частоты. Учитывая, что ферромагнитная мишень обычно приводит к понижению частоты «измерительного генератора, а мишень из металла-неферромагнетика - к повышению, получаем замечательную возможность селекции мишеней по типу металла. Кроме того, данный класс приборов практически не подвержен описанному ниже эффекту паразитной синхронизации, так как частота измерительного генератора и частоты прочих вспомогательных сигналов (тактовая частота микропроцессора) очень сильно различаются. Это позволяет повысить чувствительность.

Известно, что частота сигнала, генерируемого в контуре, образуемом параллельно включенными катушкой L и конденсатором С, зависит от индуктивности катушки и емкости конденсатора. При изменении хотя бы одного из этих параметров изменится резонансная частота контура, что приведет к соответствующему изменению и частоты генерации. Легче всего можно изменить индуктивность катушки. Для этого достаточно, например, поместить вблизи нее предмет из соответствующего металла. Данное физическое явление и положено в основу конструкции детекторов металлических предметов, работающих по принципу изменения частоты (рис.1.1).

Положительной для практики стороной является простота конструкции датчика и электронной части металлоискателей на биениях и по принципу частотомера. Такой прибор может быть очень компактным. Им удобно пользоваться, когда что-либо уже обнаружено более чувствительным прибором. Если обнаруженный предмет небольшой и находится достаточно

Рисунок 1.1. Упрощенная блок-схема металлоискателя, работающего по принципу частотомера.

глубоко в земле, то он может "затеряться", переместиться в ходе раскопок. Чтобы по многу раз не "просматривать" громоздким чувствительным металлоискателем место раскопок, желательно на завершающей стадии контролировать их ход компактным прибором малого радиуса действия, которым можно более точно узнать местонахождение предмета [1].

1.2 Металлоискатели на биениях

Название "металлоискатель на биениях" является отголоском терминологии, принятой в радиотехнике еще со времен первых супергетеродинных приемников. Биениями называется явление, наиболее заметно проявляющееся при сложении двух периодических сигналов с близкими частотами и приблизительно одинаковыми амплитудами и заключающееся в пульсации амплитуды суммарного сигнала. Частота пульсации равна разности частот двух складываемых сигналов. Пропустив такой пульсирующий сигнал через выпрямитель (детектор), можно выделить сигнал разностной частоты (рис.1.2). Такая схемотехника долгое время была традиционной, однако в настоящее время она уже не используется ни в радиотехнике, ни в металлоискателях. И там, и там - на смену амплитудным детекторам пришли синхронные детекторы, но термин "на биениях" остался до сих пор.

Рисунок 1.2. Упрощенная блок-схема металлоискателя, работающего по принципу биений.

Принцип действия металлоискателя на биениях очень прост и заключается в регистрации разности частот от двух генераторов, один из которых является стабильным по частоте, а другой содержит датчик - катушку индуктивности в своей частотозадающей цепи. Прибор настраивается таким образом, чтобы в отсутствие металла вблизи датчика частоты двух генераторов совпадали или были очень близки по значению. Наличие металла вблизи датчика приводит к изменению его параметров и, как следствие, к изменению частоты соответствующего генератора. Это изменение, как правило, очень мало, однако изменение разности частот двух генераторов уже существенно и может быть легко зарегистрировано.

Разность частот может регистрироваться самыми различными путями, начиная от простейшего, когда сигнал разностной частоты прослушивается на головные телефоны или через громкоговоритель, и кончая цифровыми способами измерения частоты.

Чувствительность металлоискателя на биениях зависит, кроме всего прочего, от параметров преобразования изменения полного сопротивления датчика в частоту. Обычно преобразование заключается в получении разностной частоты стабильного генератора и генератора с катушкой датчика в частотозадающей цепи. Поэтому, чем выше будут частоты этих генераторов, тем больше будет разность частот в отклик на появление металлической мишени вблизи датчика Регистрация небольших отклонений частоты представляет определенную сложность. Так, на слух можно уверенно зарегистрировать уход частоты тонального сигнала не менее 10 Гц. Визуально, по миганию светодиода, можно зарегистрировать уход частоты не менее 1 Гц. Другими способами можно добиться регистрации и меньшей разности частот, однако, эта регистрация потребует значительного времени, что неприемлемо для металлоискателей, которые всегда работают в реальном масштабе времени.

Способ выделения небольшой по величине разности частот двух генераторов порождает существенную техническую проблему - захват фазы. Проблема заключается в том, что два генератора, настроенные на очень близкие частоты, имеют тенденцию к паразитной взаимной синхронизации. Эта синхронизация проявляется в том, что при попытке приблизить каким-либо путем разностную частоту двух генераторов к нулю, по достижению разностной частотой некоторого порога происходит скачкообразный переход к состоянию генераторов, когда их частоты совпадают. Генераторы становятся синхронизированными. Физически явление захвата фазы объясняется нелинейностями, неизбежно присутствующими в любом генераторе, и паразитным проникновением сигнала одного генератора в другой (по цепям питания, через паразитные емкости и т.д.). Как показывает практика, если не прибегать к специальным ухищрениям типа оптоэлектронной развязки генераторов, то реально получить для разностной частоты порог наступления паразитной синхронизации порядка 10-4 относительно частоты генераторов. Отсюда можно получить оценку для частоты, на которой должен работать металлоискатель на биениях, для получения максимальной чувствительности 10... 100 кГц и выше.

Селективность по металлам на таких частотах, весьма далеких от оптимальной, проявляется очень слабо. Кроме того, по сдвигу частоты генератора определить фазу отраженного сигнала практически невозможно. Поэтому селективность у металлоискателя на биениях отсутствует.

Отклик прибора на металлический объект обратно пропорционален шестой степени расстояния. Он практически такой же, как и у металлоискателей по принципу "передача-прием". Однако дальность обнаружения приборов данного типа обычно намного хуже вследствие эффекта паразитной синхронизации [1].

1.3 Металлоискатели TR/IB

Как уже отмечалось, в последнее время особой популярностью пользуются металлоискатели TR/IB (Transmitter Receiver/Induction Balance – передача, прием и баланс индукции), или просто TR, в основу которых положен принцип «прием-передача» (рис. 1.3). В таких устройствах, называемых балансными металлоискателями, система катушек сбалансирована до нулевой взаимной индукции.

Главная особенность устройств TR/IB заключается в том, что на приемную катушку поступает не отраженный сигнал передатчика, а сигнал, источником которого являются вихревые токи, возбуждаемые на поверхности металлического предмета.

Рисунок 1.3. Упрощенная блок-схема металлоискателя, работающего по принципу «передача — прием».

Передающий сигнал, формируемый опорным генератором, поступает на передатчик и далее — на передающую катушку. При появлении металлического предмета в зоне излучения передающей катушки на его поверхности под воздействием сигнала VLF (Very Low Frequency) (работают в диапазоне частот от 3 до 30 кГц) инициируются вихревые или поверхностные токи. Эти токи являются источником вторичного сигнала, который принимается приемной катушкой металлоискателя. С выхода приемника сигнал подается на анализатор, где происходит оценка его параметров. На основе проведенного анализа формируется соответствующий сигнал для блока индикации.

Следует отметить, что главными достоинствами таких металлоискателей являются высокая чувствительность, возможность отстройки не только от фона грунта, но и от разного мусора. И, конечно же, такие устройства позволяют определять вид металла. Главным же недостатком балансных металлоискателей следует считать сложности, возникающие при изготовлении и балансировке системы катушек [2].

Список литературы

  1. Щедрин А.И. Новые металлоискатели для поиска кладов и реликвий. - 3-е изд., перераб. и доп. - М.: Горячая линия – Телеком, 2003. - 176 с.

  2. Адаменко М.В. Металлоискатели. М.: Издательский дом «ДМК-пресс», 2006. – 128 с.: ил.

Просмотров работы: 2609