О НЕКОТОРЫХ ПАРАДОКСАХ ТЕОРИИ ВЕРОЯТНОСТЕЙ - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

О НЕКОТОРЫХ ПАРАДОКСАХ ТЕОРИИ ВЕРОЯТНОСТЕЙ

Быкова О.Л. 1, Сафонова Ю.В. 1
1Федеральное государственное образовательное учреждение высшего образования «Финансовый университет при Правительстве Российской Федерации» (Орловский филиал Финуниверситета)
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Как известно, царица наук математика давно закрепила за собой статус самой точной науки. В ней, как ни в какой другой науке, особое внимание уделяется строгости и логической последовательности доказательств. Однако даже в математике возникают ситуации, в которых разные подходы к исследованию одного и того же объекта не приводят к очевидным противоречиям.

Так, например, замена пятого постулата Евклида его отрицанием привела к возникновению новой геометрии – геометрии Лобачевского. Кажущаяся, на первый взгляд, абсурдной аксиома о том, что «через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, лежащие с данной прямой в одной плоскости и не пересекающие её» по словам самого Лобачевского «…позволяет построить геометрию столь же содержательную и свободную от противоречий, как и евклидова» [2].

Возникновение неевклидовой геометрии, как и множество других подобных примеров, свидетельствует о том, что два противоположных утверждения, для каждого из которых имеются представляющиеся убедительными аргументы, могут одновременно сосуществовать друг с другом. Такие утверждения получили название «парадокс».

В настоящей работе рассмотрено несколько наиболее интересных, на взгляд авторов, парадоксов теории вероятноcтей.

Задачатрехузников

Парадокс трех узников описывает довольно драматическую ситуацию. Трое заключенных (А, Б и В) приговорены к смертной казни, причем каждый из них помещен в одиночную камеру. Губернатор случайным образом выбирает одного из них и дает ему помилование. Надзирателю известно, кто из троих помилован, но ему приказано держать это в тайне. Узник A обращается к стражнику с просьбой сказать ему имя второго заключенного (кроме него самого), который точно будет казнен: «если Б помилован, скажи мне, что казнен будет В. Если помилован В, скажи мне, что казнен будет Б. Если они оба будут казнены, а помилован я, подбрось монету, и скажи любое из этих двух имен». Надзиратель говорит, что будет казнен узник Б. Стоит ли радоваться узнику А?

На первый взгляд, стоит. До получения этой информации вероятность смерти узника А составляла ⅔, а теперь он знает, что один из двух других узников будет казнен — значит, вероятность его казни снизилась до ½. Но на самом деле узник А не узнал ничего нового: если помилован не он, ему назовут имя другого узника, а он и так знал, что кого-то из двоих оставшихся казнят. Если же ему повезло, и казнь отменили, он услышит случайное имя Б или В. Поэтому его шансы на спасение никак не изменились.

А теперь представим, что кто-то из оставшихся узников узнает о вопросе узника А и полученном ответе. Это изменит его представления о вероятности помилования.

Если разговор подслушал узник Б, он узнает, что его точно казнят. А если узник В, то вероятность его помилования будет составлять ⅔. Почему так произошло? Узник А не получил никакой информации, и его шансы на помилование по-прежнему ⅓. Узник Б точно не будет помилован, и его шансы равны нулю. Значит, вероятность того, что на свободу выйдет третий узник, равна ⅔.

Парадокс двух конвертов

Этот парадокс стал известен благодаря математику Мартину Гарднеру, и формулируется следующим образом [3]: «Предположим, вам с другом предложили два конверта, в одном из которых лежит некая сумма денег X, а в другом — сумма вдвое больше. Вы независимо друг от друга вскрываете конверты, пересчитываете деньги, после чего можете обменяться ими. Конверты одинаковые, поэтому вероятность того, что вам достанется конверт с меньшей суммой, составляет ½. Допустим, вы открыли конверт и обнаружили в нем $10. Следовательно, в конверте вашего друга может быть равновероятно $5 или $20. Если вы решаетесь на обмен, то можно подсчитать математическое ожидание итоговой суммы — то есть, ее среднее значение. Она составляет 1/2х$5+1/2×$20=$12,5. Таким образом, обмен вам выгоден. И, скорее всего, ваш друг будет рассуждать точно так же. Но очевидно, что обмен не может быть выгоден вам обоим. В чем же ошибка?»

Парадокс заключается в том, что пока вы не вскрыли свой конверт, вероятности ведут себя добропорядочно: у вас действительно 50-процентный шанс обнаружить в своем конверте сумму X и 50-процентный — сумму 2X. И здравый смысл подсказывает, что информация об имеющейся у вас сумме не может повлиять на содержимое второго конверта.

Тем не менее, как только вы вскрываете конверт, ситуация кардинально меняется (этот парадокс чем-то похож на историю с котом Шредингера, где само наличие наблюдателя влияет на положение дел). Дело в том, что для соблюдения условий парадокса вероятность нахождения во втором конверте большей или меньшей суммы, чем у вас, должна быть одинаковой. Но тогда равновероятно любое значение этой суммы от нуля до бесконечности. А если равновероятно бесконечное число возможностей, в сумме они дают бесконечность. А это невозможно.

Для наглядности можно представить, что вы обнаруживаете в своем конверте один цент. Очевидно, что во втором конверте не может быть суммы вдвое меньше.

Любопытно, что дискуссии относительно разрешения парадокса продолжаются и в настоящее время. При этом предпринимаются попытки как объяснить парадокс изнутри, так и выработать наилучшую стратегию поведения в подобной ситуации. В частности, профессор Томас Кавер предложил оригинальный подход к формированию стратегии — менять или не менять конверт, руководствуясь неким интуитивным ожиданием. Скажем, если вы открыли конверт и обнаружили в нем $10 — небольшую сумму по вашим прикидкам — стоит его обменять. А если в конверте, скажем, $1 000, что превосходит ваши самые смелые ожидания, то меняться не надо. Эта интуитивная стратегия в случае, если вам регулярно предлагают выбирать два конверта, дает возможность увеличить суммарный выигрыш больше, чем стратегия постоянной смены конвертов.

Парадокс мальчика и девочки

Этот парадокс был также предложен Мартином Гарднером.

Его первая формулировка была предложена математиком в 1959 году, когда он опубликовал один из самых ранних вариантов этого парадокса в журнале «Scientific American» [4] под названием «The Two Children Problem». Парадокс заключается в следующем. У мистера Смита двое детей. Хотя бы один ребенок — мальчик. Какова вероятность того, что и второй — тоже мальчик?

Казалось бы, задача проста. Однако если начать разбираться, обнаруживается любопытное обстоятельство: правильный ответ будет отличаться в зависимости от того, каким образом мы будем подсчитывать вероятность пола другого ребенка.

Первый подход

Рассмотрим все возможные комбинации в семьях с двумя детьми:

— Девочка/Девочка

— Девочка/Мальчик

— Мальчик/Девочка

— Мальчик/Мальчик

Вариант девочка/девочка нам не подходит по условиям задачи. Поэтому для семьи мистера Смита возможны три равновероятных варианта — а значит, вероятность того, что другой ребенок тоже окажется мальчиком, составляет ⅓. Именно такой ответ и давал сам Гарднер первоначально.

Второй подход

Представим, что мы встречаем мистера Смита на улице, когда он гуляет с сыном. Какова вероятность того, что второй ребенок — тоже мальчик? Поскольку пол второго ребенка никак не зависит от пола первого, очевидным (и правильным) ответом является ½.

Почему так происходит, ведь, казалось бы, ничего не изменилось?

Все зависит от того, как мы подходим к вопросу подсчета вероятности. В первом случае мы рассматривали все возможные варианты семьи Смита. Во втором — мы рассматривали все семьи, подпадающие под обязательное условие «должен быть один мальчик». Расчет вероятности пола второго ребенка велся с этим условием (в теории вероятностей это называется «условная вероятность»), что и привело к результату, отличному от первого.

Библиографический список

1. Микиша А. М., Орлов В. Б. Толковый математический словарь: Основные термины. М.: Рус. яз., 1989. – 244 с.

2. Об основаниях геометрии. Сборник классических работ по геометрии Лобачевского и развитию её идей. М.: Гостехиздат, 1956, С.119—120.

3. Гарднер М. А ну-ка, догадайся! — М.: Мир, 1984. — С. 139. — 214 с.

4. Martin Gardner. The Two Children Problem. Scientific American, 1959.

 

7

 

Просмотров работы: 103