ПРИНЦИПЫ СИММЕТРИИ И ЗАКОНЫ СОХРАНЕНИЯ - Студенческий научный форум

X Международная студенческая научная конференция Студенческий научный форум - 2018

ПРИНЦИПЫ СИММЕТРИИ И ЗАКОНЫ СОХРАНЕНИЯ

Гордиенко М.В. 1, Кучер М.И. 1
1Вольский военный институт материального обеспечения
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Симметрия (от греч. symmetria – соразмерность) – однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований. Это признак полноты и совершенства. Лишившись элементов симметрии, предмет утрачивает свое совершенство, красоту, своё эстетическое содержание.

Симметрия в наиболее общем понимании – это согласованность или уравновешенность отдельных частей объекта, объединённых в единое целое, гармония пропорций. Многие народы с древнейших времен владели представлениями о симметрии в широком смысле как эквивалентности уравновешенности и гармонии. В геометрических орнаментах всех веков запечатлены неиссякаемая фантазия и изобретательность художников и мастеров. Их творчество было ограничено требованиями следовать принципам симметрии.

Идеи симметрии имеют свою историю, их нередко можно обнаружить в живописи, скульптуре, музыке, поэзии, архитектуре. Операции симметрии часто служат канонами – симметричные движения составляют основу танца. Во многих случаях именно язык симметрии оказывается наиболее пригодным для обсуждения произведений изобразительного искусства.

В естествознании принципы симметрии делятся на пространственно-временные (геометрические или внешние) и внутренние, описывающие свойства элементарных частиц. Среди пространственно-временных принципов симметрии выделим следующие:

Сдвиг системы отсчёта не меняет физических законов, при этом все точки пространства равноправны. Это означает однородность пространства.

Поворот системы отсчета пространственных координат оставляет физические законы неизменными, что обозначает: все свойства пространства одинаковы по всем направлениям, иными словами, пространство изотропно. Например, свойства палки не меняются, если её переворачивать в воздухе. А вот свойства корабля изменятся значительно, если он перевернется в воде, так как на границе раздела вода-воздух свойства пространства различны. Таким образом, симметрия пространства означает, что в пространстве действия физических законов нет выделенных точек и направлений, оно является однородным.

Сдвиг во времени не меняет физических законов, все моменты времени объективно равноправны. Время однородно. Это означает, что можно любой момент времени взять за начало отсчёта. Этот принцип означает закон сохранения энергии, который основан на симметрии относительно сдвигов во времени. Период колебаний маятника часов-«ходиков» не изменится, если отсчитать его в полдень или в полночь, следовательно, законы физики не зависят от выбора начала отсчёта времени.

Законы природы одинаковы во всех инерциальных системах отсчёта. Этот принцип относительности является основным постулатом специальной теории относительности (СТО) А. Эйнштейна. В соответствии с принципом симметрии можно произвести переход в другую систему отсчёта, движущуюся относительно данной системы с постоянной по величине и направлению скоростью. Например, можно перейти из вагона поезда в машину, если уравнять их скорости.

Зеркальная симметрия природы – как отражение пространства в зеркале – не меняет физических законов.

Фундаментальные физические законы не меняются при обращении знака времени. Необратимость, существующая в макромире, имеет статистическое происхождение и связана с неравновесным состоянием Вселенной.

Замена всех частиц на античастицы не влияет на физические законы, не меняет характера процессов природы.

В современной физике обнаружена определенная иерархия законов симметрии: одни выполняются при любых взаимодействиях, другие – только при ядерном и электромагнитном. Эта иерархия отчётливо проявляется во внутренних симметриях. Внутренние симметрии действуют в микромире. В релятивистской квантовой теории предполагается взаимное превращение элементарных частиц, при этом выполняются законы сохранения:

при всех превращениях элементарных частиц сумма электрических зарядов частиц остается неизменной. До и после превращения сумма зарядов частиц должна остаться неизменной;

барионный или ядерный заряд остается постоянным;

лептонный заряд сохраняется.

Теория взаимодействия элементарных частиц продолжает своё развитие. Начало этому было положено установлением принципов симметрии. Экспериментально установлено, что в природе оказываются возможными не любые процессы и движения, а только те из них, которые не нарушают так называемых законов сохранения, выполняющих функцию правил отбора или правил запрета.

Законы сохранения – это физические законы, согласно которым численные значения некоторых физических величин, характеризующих состояние системы, не изменяются в определенных процессах. Формулировка любого закона сохранения включает две основные части. В одной утверждается, что рассматриваемая величина сохраняется, а в другой указываются условия, при которых сохранение данной величины имеет место.

Наиболее наглядно действие законов сохранения проявляется в рамках корпускулярного описания природных процессов. В качестве примера приведем закон сохранения электрического заряда.

Алгебраическая сумма электрических зарядов сохраняется, если система зарядов замкнута, то есть электрически изолирована.

Опыт показывает, что при взаимопревращениях элементарных частиц могут возникать и исчезать заряженные частицы в неограниченных количествах. Но закон сохранения заряда «разрешает» только рождения частиц парами с одинаковыми по величине и противоположными по знаку зарядами. Таким образом, законы сохранения тесно связаны с фундаментальными свойствами симметрии.

Слово «симметрия» выражает «соразмерность» и первоначально относилось только к особым свойствам предметов и тел. Немецкий математик Г. Вейль один из первых дал строгое определение понятию симметрии. Согласно Вейля объект является симметричным, если после определенной операции над ним, – поворота, сдвига, зеркального отражения, он будет выглядеть точно таким же, как и до операции.

С развитием физики понятие симметрии было расширено и перенесено на физические законы. В основу понятия симметрии был положен вопрос «Что можно сделать с физическим явлением или ситуацией, возникшей в эксперименте, чтобы получился тот же результат?».

Мы постоянно встречаемся с симметричными объектами: от рисунка на обоях до произведений архитектуры, от ювелирных изделий до технических сооружений, от окраски насекомых до кристаллов. С симметрией и разнообразными отступлениями от неё связаны представления о красоте. Поэтому симметрия играет важнейшую роль в искусстве. Не меньшую роль симметрия и эффекты, связанные с её нарушением, играют в науке. Фундаментальное значение принципа симметрии в науке выражено М. Кюри – выдающимся французским физиком: «Принцип симметрии является одним из немногих великих принципов, которые господствуют в физике».

Роль симметрии усиливается при переходе к изучению всё более тонких и глубоких явлений природы, всё более ранних этапов эволюции Вселенной. В этих областях принцип симметрии зачастую остаётся единственным инструментом продвижения науки вперёд.

Симметрии в природе, выражаясь через математические преобразования, всегда связаны с законами природы. Соответствующие догадки высказывали уже античные мыслители. Однако только в 1918 г. связь между симметриями и законами природы была выражена в строгой научной форме немецким математиком А.Э. Нетер. Она сформулировала теорему, сущность которой заключается в утверждении, что каждому виду симметрии должен соответствовать определенный закон сохранения. Было установлено, что с однородностью времени связан закон сохранения энергии. С однородностью пространства – закон сохранения импульса. С изотропностью пространства – закон сохранения момента импульса. Симметрия и законы сохранения – не следствие одно из другого, а равноправные и взаимосвязанные проявления фундаментальных свойств материи.

Симметрия обладает признаком всеобщности, она пронизывает всё сущее, поэтому и связанные с ней законы сохранения фундаментальны. В физике к настоящему времени установлены связи множества законов сохранения с соответствующими симметриями.

Особую значимость для познания природы приобрел закон сохранения энергии как отражение симметрии времени – его однородности. Подробнее остановимся на понятии энергии и роли закона сохранения энергии в естествознании.

В основе всех явлений природы лежит движение материи и взаимодействие материальных объектов. Существуют различные формы движения материи, и различные типы фундаментальных взаимодействий.

Для описания каждого из них вводятся специфические физические величины. Например, механическое движение характеризуется скоростью, импульсом, моментом импульса. Для описания тепловых процессов используются температура, теплота и т.д. Взаимодействие различных типов отображается различными силами. Все такие величины отражают качественные особенности различных форм движения материи и взаимодействия. Опыт обнаруживает, что различные формы движения и взаимодействия могут, кроме специфических величин, характеризоваться величиной, которая с равным правом относится к ним ко всем. Такой физической величиной является энергия.

Энергия есть общая мера различных форм движения и взаимодействия всех видов материи. Установленный экспериментально закон сохранения и превращения энергии утверждает, что суммарная энергия изолированной системы не изменяется. При эволюции системы могут изменяться доли энергий различного вида, что объясняется переходом энергии из одного вида в другой.

Как известно, с понятием энергии тесно связаны понятия работы, мощности, коэффициента полезного действия. Все они являются вспомогательными. Понятие работы служит для описания перехода энергии из одной формы в другую. В термодинамике таким же вспомогательным понятием является количество теплоты. Понятие мощности служит для характеристики скорости совершения работы, энергетического обмена. Мощность – скорость преобразования энергии из одного вида в другой вид. Это понятие широко используется в технике. Оно характеризует способность технического устройства преобразовывать один вид энергии в другие её виды. Эффективность такого преобразования энергии характеризует величина, известная как коэффициент полезного действия.

Обмен энергией между множеством природных систем обусловливает объединяющую роль энергии в природе и в естествознании. Преобразование энергии происходит в любых природных процессах, и выполняющийся при этих преобразованиях закон сохранения и превращения энергии связывает все явления природы воедино. Он выполняется и при протекании сложных, комплексных природных явлений, например, энергетического обмена в живых организмах, климатических процессов, химического превращения веществ, следовательно, может быть положен в основу количественных расчётов всех этих процессов.

Законы сохранения работают как принципы запрета. Например, законы сохранения энергии, импульса и момента импульса. Эти законы не дают прямых указаний, как должен идти тот или иной процесс. Они лишь говорят о том, какие процессы запрещены и потому в природе не происходят. Любой процесс, при котором нарушился бы хоть один из законов сохранения, запрещён. И наоборот – всякий процесс, при котором законы сохранения не нарушаются, в принципе может иметь место, если при этом не нарушаются другие фундаментальные законы природы.

В качестве принципов запрета законы сохранения играют важную методологическую роль в естествознании. Законы сохранения являются мощным инструментом теоретического исследования всевозможных процессов, происходящих в природе, – от микромира до космических явлений.

Дальнейшее развитие физики продемонстрировало всеобщность принципа симметрии, заставило значительно глубже взглянуть на симметрию, расширив это понятие за рамки наглядных геометрических представлений. Симметрия ограничивает число возможных вариантов структур или вариантов поведения систем. Это важно с методологической точки зрения, так как даёт возможность для многих исследовательских проблем находить решение как результат выявления единственно возможного варианта, без выяснения подробностей, – так называемое решение из соображений симметрии.

В физике элементарных частиц стало обычной практикой при обнаружении нового закона сохранения, проявляющегося в микромире, искать соответствующую симметрию и наоборот.

Таким образом, симметрию определяют в связи с такими понятиями, как сохранение и изменение, равновесие, упорядоченность, тождество и различие, что связано с охватом всех аспектов. Сущностью симметрии является тождество противоположностей.

Симметрия – это группа преобразований. Всякое построение симметрии связано с введением того или иного равенства. Равенство относительно, и может существовать множество равенств и соответственно множество симметрий.

Наиболее общая характеристика причинно-следственных связей симметрии принадлежит выдающемуся французскому физику П. Кюри, сформулировавшему в 1890 г. основные законы симметрии:

1. Когда какие-либо причины порождают некоторые эффекты, элементы симметрии причин должны обнаруживаться в этих эффектах. Симметрия причин предполагает неизбежное возникновение симметрии следствий.

2. Когда какие-либо эффекты проявляют некоторую дисимметрию или несимметричность, то эта дисимметрия должна обнаруживаться и в причинах, их породивших. Дисимметрия следствий имеет в своей основе дисимметрию причин.

3. Положения, обратные этим двум, как правило, несправедливы.

Список использованных источников

1. Карпенков С.Х. Концепции современного естествознания: Учебник для студентов вузов [Текст]. – 11-е изд., перераб. и доп.– М.: КНОРУС, 2012. – 670 с.

2. Нётер, Эмми (Ама́лия Э́мми Нётер) // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%9D%D1%91%D1%82%D0%B5%D1%80,_%D0%AD%D0%BC%D0%BC%D0%B8 (В физике теорема Нётер объясняет связь между симметрией и законами сохранения).

3. Симметрия // Википедия [Интернет-ресурс]. Режим доступа: https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BC%D0%BC%D0%B5%D1%82%D1%80%D0%B8%D1%8F.

4. Френкель, Е.Н. Концепции современного естествознания : физические, химические и биологические концепции : учеб. пособие [Текст] / Е.Н. Френкель. – Ростов н/Д : Феникс, 2014. – 246 с.

5. Эйнштейн Альберт, Инфельд Леопольд. Эволюция физики. Развитие идей от первоначальных понятий до теории относительности и квантов [Электронный ресурс]. Режим доступа: http://e-libra.ru/read/355279-eevolyutciya-fiziki.html.

Просмотров работы: 1586