X Международная студенческая научная конференция
«Студенческий научный форум» - 2018
 
     



Лагутина Светлана Николаевна
Анастасия Горбачева,спасибо за вопрос!Безусловно есть свои особенности развития течения аллергических реакций от перечисленных Вами факторов, так георграфическое положение некоторых стран,городов предполагает наличие различных температур воздуха,что способствует развитию, например,холодовой аллергии. Расовая принадлежность,как ни странно,также влияет на предпасположенность к аллергиям, у каждого представителя расового класса свои ферментативные реакции в организме,в некоторых случаях,каких-то классов ферментов значительно больше,что также будет способствовать развитию быстрой сенсибилизации организма.








АРХИВ "Студенческий научный форум"

ВЛИЯНИЕ ЛЕГИРУЮЩИХ ЭЛЕМЕНТОВ НА ХРУПКОСТЬ СТАЛИ
Бервинова А.В., Леонтьева Н.Н.
Текст научной работы размещён без изображений и формул.
Полная версия научной работы доступна в формате PDF


Вопрос повсеместного использования легированной стали играет огромную роль в народном хозяйстве. После проведения множества экспериментов было установлено, что с помощью легирования возможно получить сталь высокого качества и соответствующей прочности. Но поскольку проблема снижения хрупкости легированной стали остаётся открытой, особый интерес представляет изучение влияния легирующих добавок на склонности стали к охрупчиванию.

Легированная сталь представляет собой железоуглеродистый сплав, содержащий ряд примесей, которые вводятся для повышения прочности, износостойкости, коррозионной стойкости, жаропрочности и т.д. Делится в зависимости от количества легирующих добавок на низколегированную (до 5% добавок), легированную (от 5 до 10%) и высоколегированную (более 10%). Мы рассмотрим высоколегированную сталь, поскольку она является практически незаменимым материалом и широко используется в нефтяной индустрии, химической промышленности, машиностроении, а также в условиях агрессивных сред.

Важным аспектом в области легирования стали является выяснение её склонности к хрупкому разрушению: из-за низких температур, после отпуска, надреза, вызывающего напряжения, или перегрева. Чтобы обеспечить рациональность легирования стали, вполне логично использовать её термообработку для повышения прочностных характеристик.

Практически у всех легированных сталей, медленно охлажденных после высокого отпуска, происходит резкое снижение ударной вязкости. Это явление названо отпускной хрупкостью.

Различают два вида отпускной хрупкости:

1) Отпускная хрупкость I рода появляется при температуре 250-350°С у любых сталей. Поэтому такую хрупкость считают необратимой, из-за невозможности устранения этого явления.

2) Отпускная хрупкость II рода, или обратимая, появляется после отпуска при температуре 500°С и выше. Такая хрупкость проявляется из – за медленного охлаждения после отпуска. Такой вид хрупкости встречается лишь в некоторых сталях, легированных никелем, марганцем или хромом. Для подавления развития охрупчивания второго рода следует проводить охлаждение как можно с большей скоростью.

Эффект отпускной хрупкости стали связан с неоднородностью зерен по его составу и с обогащением пограничных областей зерна различными элементами. У сталей, склонных к отпускной хрупкости, ударная вязкость при медленном охлаждении после отпуска снижается в 5 – 10 раз по сравнению с величиной ударной вязкости, которая получается при быстром охлаждении стали после отпуска. Отпускная хрупкость появляется также в результате длительной выдержки стали при температурах отпуска стали 400-500°.[3, с.10]

Склонность стали к отпускной хрупкости можно значительно снизить, добавив в неё при выплавке 0,3% молибдена или 0,7% вольфрама. Но необходимо отметить, что эти химические элементы достаточно дороги и их применяют только в самых ответственных конструкциях.

Наличие охрупчивания у безуглеродистых сплавов показывает, что углерод оказывает большое влияние на хрупкость только при легировании стали.

По отношению к углероду легирующие вещества делятся на две группы:

  1. Карбидообразующие. К ней относят марганец, молибден, ванадий, хром, титан и др.

  2. Не образующие карбидов. К ней относят алюминий, никель, кобальт, медь, кремний.

Некоторые химические соединения, такие как фосфор и азот, способны вызвать отпускную хрупкость, если содержатся в стали в большом количестве. Особенно склонны к хрупкости стали, содержащие более 0, 8% хрома или более 1% марганца. Чем больше в стали марганца, тем меньше должно быть хрома, и наоборот. Желательно, чтобы при содержании магранца 1,5% хрома было не более 1%. Такие элементы, как никель, кремний, не вызывают появление отпускной хрупкости в стали, если находятся в ней совместно с хромом или марганцем. Но благодаря проведенным опытам было выяснено, что высокое содержание никеля в стали никак не влияет на снижение склонности стали к разрушению.

Также определённое влияние на возможность появления коррозии в стали имеет ниобий. Его концентрация, которая превышает количество присутствующего углерода в сплаве примерно в 7-10 раз, позволяет устранить межкристаллическую коррозию нержавеющей стали и защищает сварные соединения от разрушения. Анализ карбидного осадка показал, что 0,10% ниобия после закалки до температуры 880° находится не только в карбидах, но и в твердом растворе. Таким образом, ниобий, растворившись в аустените марганцевой стали, увеличивает его устойчивость, тогда как в других сталях он практически не растворяется даже при более высокой температуре.

Добавки молибдена и вольфрама к стали увеличивают притяжение между атомами и тем самым препятствуют возникновению хрупкости. Молибден понижает чувствительность стали к хрупкому разрушению. Даже при -60° вязкость стали, легированной молибденом, составляет 55 – 60% её вязкости при нормальной температуре.[1, с.96,97] То же влияние оказывают на сталь титан и ванадий, хотя данные о воздействии ванадия на отпускную хрупкость стали весьма противоречивы. Если его содержание в стали менее 0,3%, он мало влияет на склонность стали к охрупчиванию; при содержании более 0,3% ванадий повышает её.

У хромоникелевой стали, дополнительно легированной молибденом или вольфрамом, в резкой форме выявляются две зоны хрупкости, иногда значительно отстающие друг от друга по температурной шкале. Некоторые исследования доказывают, что при определенных условиях выплавки стали склонность её к появлению таких зон хрупкости можно уменьшить и без этих добавок, поскольку сталь, имеющую низкую ударную вязкость из – за медленного охлаждения вследствие высокого отпуска, можно корректировать повторным отпуском. Для этого необходимо нагреть сталь до нужной температуры и быстро охладить.

Таким образом, эффект хрупкости, возникающий вследствие отпуска, сопровождаемого охлаждением, следует объединить с такими факторами, как:

а) степень легирования аустенита б)степень различных пограничных адсорбций.[2, с.37]

Проведенные в интересующей нас области исследования показали, что у некоторых легированных сталей при медленном их охлаждении после высокого отпуска выделяются в измельченном состоянии химические соединения металла с азотом, кислородом, углеродом. Считают, что эти соединения являются причиной отпускной хрупкости стали. Если стали, склонные к отпускной хрупкости, после высокого отпуска охлаждать быстро, то указанные соединения не успеют выделиться, и сталь сохранит свою ударную вязкость. Следовательно, отпускная хрупкость не является неизменным пороком стали и её можно избежать вышеописанным методом или же с помощью комбинирования легирующих элементов в нужных пропорциях между собой и сталью.

Правильно выполненное легирование сталей наделяет их специфическими особенностями. И современные предприятия активно используют этот процесс для широкого выпуска сплавов с первоклассными технологическими характеристиками.

Список литературы

  1. Браун М. П. Влияние легирующих элементов на свойства стали.- Киев: Гостехиздат УССР, 1962. — 192 с.: ил.

  2. Меськин В. С. Основы легирования стали.- М.: Государственное научно-техническое издательство литературы по черной и цветной металлургии, 1959. - 689 с.

  3. Утевский Л. М., Гликман Е. Э., Карк Г. С. Обратимая отпускная хрупкость стали и сплавов железа.- М.: Металлургия, 1987. — 222 с.: ил.