АМОРФНЫЕ МЕТАЛЛЫ, МЕТАЛЛИЧЕСКИЕ СТЕКЛА - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

АМОРФНЫЕ МЕТАЛЛЫ, МЕТАЛЛИЧЕСКИЕ СТЕКЛА

Гаглоева Д.И. 1, Неёлова О.В. 1
1Северо-Осетинский государственный университет им. К.Л. Хетагурова
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
В последние годы XX столетия особого внимания физиков и материаловедов заслуживают так называемые металлические стекла, представляющие собой аморфные металлические сплавы с неупорядоченным расположением атомов в пространстве. До недавнего времени понятие «металл» связывалось с понятием «кристалл», атомы которого расположены в пространстве строго упорядочено. Однако в начале 60-х годов прошлого века впервые были получены металлические сплавы, не имеющие кристаллической структуры [1]. Металлы и сплавы с беспорядочным расположением атомов стали называть аморфными металлическими стеклами.

Металлические стекла (аморфные сплавы, стекловидные металлы, метглассы) – это металлические сплавы в стеклообразном состоянии, образующиеся при сверхбыстром охлаждении металлического расплава, когда быстрым охлаждением предотвращена кристаллизация (скорость охлаждения менее 106 К/с) [2]. С помощью методов рентгеновской, нейтронной, электронной дифракции было показано, что в аморфных металлических стеклах имеется более или менее четко определяемый на расстоянии двух-трех соседних атомов так называемый ближний порядок: в аморфном металлическом сплаве элементарная ячейка, характерная для кристаллического состояния, также сохраняется. Однако при стыковке элементарных ячеек в пространстве порядок их нарушается, и стройность рядов атомов, характерная для дальнего порядка, отсутствует [2].

Особенности структуры аморфных металлических стекол сказались и на многих физических свойствах. Металлические стекла обладают уникальным сочетанием высоких механических, магнитных, электрических и антикоррозионных свойств. Так, несмотря на то, что плотность аморфных сплавов на 1-2% ниже плотности кристаллических аналогов, прочность их выше в 5-10 раз [3]. Металлические стекла отличаются от кристаллических сплавов отсутствием таких дефектов структуры, как вакансии, дислокации, границы зерен, и уникальной химической однородностью: отсутствует ликвация, весь сплав однофазен. Особенности строения металлических стекол обуславливают отсутствие характерной для кристаллов анизотропии свойств, высокую прочность и магнитную проницаемость, малые потери на перемагничивание.

Ещё в начале 60-х годов было показано, что можно получить аморфную структуру сплава, охлаждая жидкий расплав на холодной металлической подложке [1]. Для получения металлических стекол используются два метода. В первом методе жидкий металл наносят на внешнюю цилиндрическую поверхность вращающегося диска (колеса), во втором – расплав извлекается вращающимся диском. Данным методом перевести в твердое аморфное состояния чистые металлические элементы трудно. Например, чистый никель удалось зафиксировать в стеклообразном состоянии только при экстремально больших скоростях охлаждения (около 1010 К/с). Однако сплавление элементов друг с другом, особенно с металлоидами, значительно облегчает процесс стеклообразования. Характерным в этом отношении является сплав Pd - Si. Чистый палладий не удается перевести в аморфное состояние даже при очень больших скоростях охлаждения. Но сплав палладия с 20% кремния аморфизируется уже при скоростях охлаждения примерно 102 К/с. Другой способ получения металлических стекол - высокоскоростное ионно-плазменное распыление металлов и сплавов. Аморфные металлические сплавы получают в виде напыленного слоя толщиной от 1 до 1000 мкм [3].

Благодаря особенностям своего строения, аморфные металлы и сплавы имеют ряд отличительных свойств. Аморфные сплавы обладают уникальными механическими свойствами: они имеют высокую прочность и твёрдость в сочетании с высокой пластичностью при сжатии или изгибе, также имеют высокий предел прочности на растяжение, высокую усталостную прочность, высокую энергию ударного разрушения и упругости. Так, например, по своей прочности и пластичности проволока их аморфного сплава Fe75Si10B15 превосходит даже стальную рояльную проволоку. Поэтому аморфные сплавы могут найти самое широкое применение как конструкционные или специальные материалы: конструкционные материалы машинного оборудования, материалы матриц (фильер), инструментальные материалы, композитные материалы и др. Но наиболее широкое применение металлические стекла нашли благодаря их магнитным и электрическим свойствам [2]. Важной характеристикой аморфных металлов является мягкий ферромагнетизм металлических стёкол на основе Fe–Ni–Co. Отсутствие анизотропии, присущее аморфной структуре, приводит к очень высокой магнитной проницаемости и низким энергетическим потерям. Таким образом, эти материалы могут найти применение в областях, где требуются мягкие магниты (например, сердечники трансформаторов, магнитные головки и экраны, магнетометры, сигнальные устройства) [2]. Беспорядок расположения атомов в виде ближнего порядка оказывает сильное влияние и на электропроводность металлических стекол. Их удельное электрическое сопротивление в 3-5 раз выше, чем у кристаллических аналогов. Это связано с тем, что при движении электронов через нерегулярную структуру аморфных металлических стекол они испытывают гораздо больше столкновений с ионами, чем в кристаллической решетке [3].

Сплавы типа металл – металл и, особенно, металл – металлоид в аморфном состоянии имеют более высокую коррозионную стойкость, чем в кристаллическом состоянии, т.к. химическая однородность, отсутствие межзёренных границ и линейных дефектов типа дислокаций увеличивает коррозионную стойкость за счет устранения локальной разности электрохимического потенциала [4]. Например, аморфный сплав Fe45Cr25Мо10P13C7 используется в качестве электродных материалов и фильтров для работы в растворах кислот.

Возможно также использование металлических стекол в качестве катализаторов органического синтеза, материалов для топливных элементов, а также в качестве медицинских имплантатов.

Аморфные металлы часто называют материалами будущего, «фантастическими материалами», что связано с уникальностью методов их получения и особыми свойствами, не встречающимися у кристаллических металлов. Однако аморфные материалы не лишены недостатков: это невысокая их термическая устойчивость и недостаточная стабильность во времени. Также недостатком являются малые размеры получаемых лент, проволоки, гранул и невозможность их сварки. Поэтому аморфные металлы не пригодны в качестве высокотемпературных материалов, а их применение, вероятно, будет ограничено только малогабаритными изделиями.

Однако полное завершение исследований по аморфным структурам еще впереди. Следует сказать, что ученых и инженеров ждет интересная и захватывающая работа в области аморфных металлических материалов, т.к. на очереди получение аморфных структур, в которых отсутствует даже ближний порядок [4].

Список литературы

  1. Вьюгов П.Н., Дмитренко А.Е. Металлические стекла. Вопросы атомной науки и техники. Серия: Вакуум, чистые материалы, сверхпроводники, 2004, №4, с. 185-191.

  2. Ржевская С. В. Материаловедение: Учеб. для вузов. – М.: Логос, 2004. – 424 с.

  3. Золотухин И.В. Аморфные металлические материалы. – Соросовский образовательный журнал, №4, 1997, с. 73-78.

  4. Судзуки К., Фудзимори Х., Хасимото К. Аморфные металлы. / Под ред. Масумото Ц. Пер. с япон. – М.: Металлургия, 1987. – 328 с.

Просмотров работы: 2627