СИСТЕМА ПЕРЕДАЧИ ДАННЫХ НА ОСНОВЕ ИНТЕРФЕЙСА RS-485 ПО ПРОТОКОЛУ MODBUS - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

СИСТЕМА ПЕРЕДАЧИ ДАННЫХ НА ОСНОВЕ ИНТЕРФЕЙСА RS-485 ПО ПРОТОКОЛУ MODBUS

Коростелев Д.В. 1, Тихонов В.А. 1
1Курганский институт железнодорожного транспорта филиал Уральского государственного университета путей сообщения. г.Курган
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Основные понятия о передаче данных

Передача данных (обмен данными, цифровая передача, цифровая связь) — физический перенос данных (цифрового битового потока) в виде сигналов от точки к точке или от точки к нескольким точкам средствами электросвязи по каналу связи, как правило, для последующей обработки средствами вычислительной техники.

Передача данных может быть аналоговой или цифровой (то есть поток двоичных сигналов), а также они могут быть модулированы посредством аналоговой модуляции, либо посредством цифрового кодирования.

Аналоговая связь является передачей постоянно меняющегося цифрового сигнала, цифровая связь является непрерывной передачей сообщений.

Сообщения представляют собой либо последовательность импульсов, означающую линейный код (в полосе пропускания), либо ограничивается набором непрерывно меняющейся формы волны, используя метод цифровой модуляции. Такой способ модуляции и соответствующая ему демодуляция осуществляются модемным оборудованием.

Передаваемые данные могут быть цифровыми сообщениями, идущими из источника данных, например, из компьютера или от клавиатуры. Это может быть и аналоговый сигнал — телефонный звонок или видеосигнал, оцифрованный в битовый поток, используя импульсно-кодирующую модуляцию (PCM) или более расширенные схемы кодирования источника (аналого-цифровое преобразование и сжатие данных). Кодирование источника и декодирование осуществляется кодеком или кодирующим оборудованием.

Передача данных может быть последовательной и параллельной.

В телекоммуникации, последовательная передача — это последовательность передачи элементов сигнала, представляющих символ или другой объект данных. Цифровая последовательная передача — это последовательная отправка битов по одному проводу, частоте или оптическому пути. Так как это требует меньшей обработки сигнала и меньше вероятность ошибки, чем при параллельной передаче, то скорость передачи данных по каждому отдельному пути может быть быстрее. Этот механизм может использоваться на более дальних расстояниях, потому что легко может быть передана контрольная цифра или бит чётности.

Параллельной передачей в телекоммуникациях называется одновременная передача элементов сигнала одного символа или другого объекта данных. В цифровой связи параллельной передачей называется одновременная передача соответствующих элементов сигнала по двум или большему числу путей. Используя множество электрических проводов можно передавать несколько бит одновременно, что позволяет достичь более высоких скоростей передачи, чем при последовательной передаче. Этот метод применяется внутри компьютера, например, во внутренних шинах данных, а иногда и во внешних устройствах, таких, как принтеры. Основной проблемой при этом является «перекос», потому что провода при параллельной передаче имеют немного разные свойства (не специально), поэтому некоторые биты могут прибыть раньше других, что может повредить сообщение. Бит чётности может способствовать сокращению ошибок. Тем не менее, электрический провод при параллельной передаче данных менее надёжен на больших расстояниях, поскольку передача нарушается с гораздо более высокой вероятностью.

Если передача данных должна осуществляться на большие расстояния, то тогда возрастает опасность, что при пересылке данных может произойти ошибка. Речь идет о длинных линиях передачи данных между двумя раздельными блоками обработки данных, каждый из которых имеет собственный логический потенциал земли и устройство защиты от замыкания на землю. Между точками заземления в обоих блоках существует разница напряжений, воспринимаемая как помеха. Поблизости от устройств обработки данных имеется много источников помех, оказывающих влияние на линии связи. При большой длине кабеля возрастает опасность наводки помех.

Другой проблемой является согласование в линиях передачи данных. Если эти линии не совсем точно согласуются с характеристическим волновым сопротивлением, то тогда появляются отражения сигналов: после передачи импульса в линии связи некоторое время наблюдаются остаточные колебания, что может привести к ошибке в передаче данных. Для устранения этой проблемы надо некоторое время выждать, пока линия связи снова придет в состояние покоя, однако для этого потребуется время. Поэтому за последние годы были разработаны различные методы передачи данных через длинные линии, чтобы добиться хорошей взаимосвязи между двумя подсистемами. Эти методы реализуются в виде однопроводных и дифференциальных систем связи, причем последние могут быть выполнены в виде уравновешенных и неуравновешенных систем.

В однопроводной системе (рис. 1.1), которая реализуется лишь при связи на короткие расстояния, передача сигналов происходит только по одной линии. Обратной линией связи является соединение через землю.

Рисунок 1.1 – Однопроводная система.

При больших длинах линий связи в общем случае можно утверждать, что однопроводные системы передачи неприемлемы; здесь приходится рассчитывать только на сбалансированные (рис. 1.2) и несбалансированные (рис. 1.3) дифференциальные системы.

Рисунок 1.2 – Дифференциальная передача данных со сбалансированным управлением.

В сбалансированной системе противофазный сигнал поступает на 2 линии передачи. Со стороны приемного устройства информация воспринимается дифференциально и переводится в логический сигнал.

Рисунок 1.3 – Дифференциальная передача данных с несбалансированным управлением.

В несбалансированной системе в линию связи посылаются не парафазные, а однофазные сигналы.

При передаче данных мы используем 2 способа, которые обозначаются как TDM (передача с разделением по времени) и FDM (передача с разделением по частоте).

При передаче данных мы различаем синхронную и асинхронную передачу.

Для передачи данных имеются нормированные средства передачи, которые обозначаются как стандартные устройства сопряжения или стандартные интерфейсы, такие, как EIA-RS232C или CCITT V24 и V28.

Передача данных может выполняться в одном или обоих направлениях. При дуплексном режиме приемник и передатчик работают одновременно, при полудуплексном по очереди.

При последовательной передаче двоичные разряды данных передаются к приемнику по одной линии со сдвигом во времени.

При последовательной передаче данных особенно важно знать, какой двоичный разряд информационного слова является первым и с какой скоростью передаются двоичные разряды, т.е. должен быть установлен определенный критерий синхронизации, с тем, чтобы передача данных осуществлялась правильно. Другим важнейшим фактором является ответ на вопрос: какова длина информационного слова, выраженная количеством двоичных разрядов? Информационное слово плюс дополнительные двоичные разряды в качестве сигналов старта и прекращения передачи данных, указывающих начало и конец передаваемого слова, обозначаются как «кадр».

В следующих разделах рассмотрены стандарт EIA RS-485, и прочие устройства, необходимые для осуществления передачи данных через этот интерфейс, а также схемы подключения микроконтроллеров и управляющая программа.

  1. Интерфейс RS-485
    1. Основные понятия и определения:

В ходе изложения основных требований стандарта EIA RS-485 использованы следующие термины:

  • Линия связи (Interchange Circuit) — физическая среда, предназначенная для переноса информации между единицами оборудования, принимающими участие в информационном обмене, включая данные, сигналы управления и синхронизации.

  • Канал передачи данных (Data Transmission Channel) — совокупность физической среды и технических средств, включая аппаратуру преобразования сигналов, вовлекаемых в процесс передачи информации между оборудованием системы связи.

  • Формирователь (Driver)

а)электронная цепь или контакт реле (источник) на передающей стороне линии связи, посредством которых осуществляется передача двоичных цифровых сигналов в оконечную нагрузку по соединительному кабелю;

б)передатчик двоичных цифровых сигналов.

  • Оконечная нагрузка (Terminator)

а)электронная цепь (потребитель) на приемной стороне цепи обмена, посредством которой осуществляется прием двоичных цифровых сигналов от формирователя по соединительному кабелю;

б)приемник двоичных цифровых сигналов.

RS-485 предназначен для передачи двоичных данных. Данные передаются по двухпроводному полудуплексному многоточечному последовательному симметричному каналу связи.

  1.  
    1. Характеристики интерфейса стандарта RS-485:
  1. Двунаправленная полудуплексная передача данных. Поток последовательных данных передаётся одновременно только в одну сторону, передача данных в другую сторону требует переключения приёмопередатчика. Приёмопередатчики принято называть "драйверами"(driver), это устройство или электрическая цепь, которая формирует физический сигнал на стороне передатчика. Рассмотрение соответствующего коммуникационного протокола выходит за рамки стандарта TIA/EIA-485-A. Получается, что специалист по разработке программного обеспечения волен применять любой тип сетевого протокола, который, по его мнению, подходит для данного проекта.

  2. Симметричный канал связи. Для приёма/передачи данных используются два равнозначных сигнальных провода. Провода означаются латинскими буквами "А" и "В". По этим двум проводам идет последовательный обмен данными в обоих направлениях (поочередно). При использовании витой пары симметричный канал существенно повышает устойчивость сигнала к синфазной помехе и хорошо подавляет электромагнитные излучения создаваемые полезным сигналом.

  3. Дифференциальный (балансный способ передачи данных). По своей природе линии передачи RS-485 дифференциальны. Существует два провода – А и B. Драйвер подает на оба провода комплементарные напряжения. На Рис. 2.2.1 представлено определение стандартом EIA-485-A параметров VOA, VOB и VO. При понижении напряжения VOA повышается напряжение VOB и, наоборот, при понижении напряжения VOB повышается напряжение VOA. Большинство физических частей также обладают возможностью вводить провода А и В в «третье состояние» (tristate, т.е. отключенное состояние).

Рисунок 2.2.1 - Взаимосвязь между параметрами VOA, VOB и VO

  1. Многоточечность. Допускает множественное подключение приёмников и приёмопередатчиков к одной линии связи. При этом допускается подключение к линии только одного передатчика в данный момент времени, и множество приёмников, остальные передатчики должны ожидать освобождения линии связи для передачи данных.

  2. Низкоимпендансный выход передатчика. Буферный усилитель передатчика имеет низкоомный выход, что позволяет передавать сигнал ко многим приёмникам. Стандартная нагрузочная способность передатчика равна 32-м приёмникам на один передатчик. Кроме этого, токовый сигнал используется для работы "витой пары" (чем больше рабочий ток "витой пары", тем сильнее она подавляется синфазные помехи на линии связи).

  3. Зона нечувствительности. Если дифференциальный уровень сигнала между контактами АВ не превышает ±200мВ, то считается, что сигнал в линии отсутствует. Это увеличивает помехоустойчивость передачи данных.

  4. Четырехпроводной интерфейс. Интерфейс RS-485 имеет две версии: двухпроводную и четырехпроводную. Двухпроводная используется для полудуплексной передачи (рис. 2.2.2), когда информация может передаваться в обоих направлениях, но в разное время. Для полнодуплексной (дуплексной) передачи используют четыре линии связи: по двум информация передается в одном направлении, по двум другим - в обратном (рис. 2.2.3).

Рисунок 2.2.2 - Соединение трех устройств с интерфейсом RS-485 по двухпроводной схеме

Недостатком четырехпроводной (рис. 2.2.3) схемы является необходимость жесткого указания ведущего и ведомых устройств на стадии проектирования системы, в то время как в двухпроводной схеме любое устройство может быть как в роли ведущего, так и ведомого.

Рисунок 2.2.3 - Четырехпроводное соединение устройств с интерфейсом RS-485

Достоинством четырехпроводной схемы является возможность одновременной передачи и приема данных, что бывает необходимо при реализации некоторых сложных протоколов обмена.

  1.  
    1. Согласование линии с передатчиком и приемником.

Электромагнитная волна, достигая конца кабеля, отражается от него и возвращается к источнику сигнала, отражается от источника и опять проходит к концу кабеля. Вследствие потерь на нагрев проводника и диэлектрика амплитуда волны в конце кабеля всегда меньше, чем в начале. Для типовых кабелей можно считать, что только первые 3 цикла прохождения волны существенно влияют на форму передаваемого сигнала. Это дает общую длительность паразитных колебаний на фронтах передаваемых импульсов, связанных с отражениями, около 33,6 мкс при длине кабеля 1 км. Поскольку в приемном узле универсальный трансивер (UART Universal Asynchronous Receive Transmit) определяет логическое состояние линии в центре импульса, то минимальная длительность импульса, который еще можно распознать с помощью UART, составляет 33,6 х 2 = 67,2 мкс. Поскольку при кодировании минимальная длительность импульса позволяет закодировать 1 бит информации, то получим максимальную скорость передачи информации, которую еще можно принять, несмотря на наличие отражений, равную 1/67,2 мкс = 14,9 кбит/с. Учитывая, что реально условия передачи всегда хуже расчетных, стандартную скорость передачи 9600 бит/с приближенно можно считать границей, на которой еще можно передать сигнал на расстояние 1000 м несмотря на наличие отражений от концов линии.

При большей скорости передачи, например, 115200 бит/с, ширина передаваемых импульсов составляет 4,3 мкс, и их невозможно отличить от импульсов, вызванных отражениями от концов линии. Используя вышеприведенные рассуждения, можно получить, что при скорости передачи 115200 бит/с максимальная длина кабеля, при которой еще можно не учитывать отражения от концов линии, составляет 60 м.

Для устранения отражений линия должна быть нагружена на сопротивление, равное волновому сопротивлению кабеля

где - погонные сопротивление, индуктивность, проводимость и емкость кабеля, - комплексная круговая частота.

Как следует из этой формулы, в кабеле без потерь волновое сопротивление не зависит от частоты, при этом прямоугольный импульс распространяется по линии без искажений. В линии с потерями фронт импульса "расплывается" по мере увеличения расстояния импульса от начала кабеля.

Отношение амплитуды напряжения отраженного синусоидального сигнала (отраженной волны) от конца линии к амплитуде сигнала, пришедшего к концу линии (падающей волны) называется коэффициентом отражения по напряжению, который зависит от степени согласованности волновых сопротивлений линии и нагрузки:

где Rн - сопротивлению согласующего резистора на конце или в начале линии (кабеля). Случай Rн = Z0 соответствует идеальному согласованию линии, при котором отражения отсутствуют.

Для согласования линии используют терминальные (концевые) резисторы (рис. 2.3.1). Величину резистора выбирают в зависимости от волнового сопротивления используемого кабеля.

Кабели, спроектированные специально для интерфейса RS-485, имеют волновое сопротивление 120 Ом.

Рисунок 2.3.1 – Применение терминальных резисторов для согласования линии передачи

Резисторы ставят на двух противоположных концах кабеля. Распространенной ошибкой является установка резистора на входе каждого приемника, подключенного к линии, или на конце каждого отвода от линии, что перегружает стандартный передатчик. Дело в том, что два терминальных резистора в сумме дают 60 Ом и потребляют ток 25 мА при напряжении на выходе передатчика 1,5 В; кроме этого, 32 приемника со стандартным входным током 1 мА потребляют от линии 32 мА, при этом общее потребление тока от передатчика составляет 57 мА. Обычно это значение близко к максимально допустимому току нагрузки стандартного передатчика RS-485. Поэтому нагрузка передатчика дополнительными резисторами может привести к его отключению средствами встроенной автоматической защиты от перегрузки.

Второй причиной, которая запрещает использование резистора в любом месте, кроме концов линии, является отражение сигнала от места расположения резистора.

При расчете сопротивления согласующего резистора нужно учитывать общее сопротивление всех нагрузок на конце линии. Например, если к концу линии подключен шкаф комплектной автоматики, в котором расположены 30 модулей с портом RS-485, каждый из которых имеет входное сопротивление 12 кОм, то общее сопротивление всех модулей будет равно 12 кОм/30 = 400 Ом. Поэтому для получения сопротивления нагрузки линии 120 Ом сопротивление терминального резистора должно быть равно 171 Ом.

Недостаток применения согласующих резисторов. При длине кабеля 1 км его омическое сопротивление (для типового стандартного кабеля) составит 97 Ом. При наличии согласующего резистора 120 Ом образуется резистивный делитель, который примерно в 2 раза ослабляет сигнал, и ухудшает отношение сигнал/шум на входе приемника. Поэтому при низких скоростях передачи (менее 9600 бит/с) и большом уровне помех терминальный резистор не улучшает, а ухудшает надежность передачи.

В промышленных преобразователях интерфейса RS-232 в RS-485 согласующие резисторы обычно уже установлены внутри изделия и могут отключаться микропереключателем (джампером).

  1.  
    1. Технические характеристики интерфейса:
  1. Допустимое число приёмопередатчиков (драйверов) – 32.

  2. Максимальная длина линии связи 1200 м (4000ft)

  3. Максимальная скорость передачи 10 Мбит/с. Скорость передачи данных зависит от длины кабельного сегмента. На Рис. 2.4.1 представлен типичный график зависимости скорости передачи данных (в битах) от длины кабельного сегмента. Производительность сети может разниться в зависимости от используемых типов кабеля, терминальных резисторов, драйверов и приемников, от уровня электромагнитной интерференции и физической геометрии сети.

Рис. 2.4.1 – Зависимость скорости передачи данных от длины кабельного сегмента вызвана ограничениями по задержке распространения сигнала по линии передачи.

  1. Минимальный выходной сигнал драйвера ±1,5 В

  2. Максимальный выходной сигнал драйвера ±5 В

  3. Максимальный ток короткого замыкания драйвера 250 мА

  4. Выходное сопротивление драйвера 54 Ом

  5. Входное сопротивление драйвера 12 кОм

  6. Допустимое суммарное входное сопротивление 375 Ом

  7. Диапазон нечувствительности к сигналу ±200 мВ

  8. Уровень логической единицы (Uab) >+200 мВ

  9. Уровень логического нуля (Uab)

Просмотров работы: 1308