ИСТОЧНИКИ ШУМА ВЕНТИЛЯТОРОВ И МЕТОДЫ БОРЬБЫ С НИМ - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

ИСТОЧНИКИ ШУМА ВЕНТИЛЯТОРОВ И МЕТОДЫ БОРЬБЫ С НИМ

Шарпаев И.В. 1, Куприянова У.Е. 1
1НИ ТПУ
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
С техническим прогрессом и улучшением качества жизни предъявляются серьезные требования к выработке шума различными приборами, в частности вентиляторам. Тема статьи актуальна, на данный момент вопрос о необходимости малошумных вентиляторов стоит в сфере обороны, так как обнаружение подводных объектов ведется посредством передачи и приема акустических волн. Целью работы является анализ всех источников шума вентилятора и поиск методов, позволяющих избавиться или снизить его. Упругие колебания – это колебания механических систем, упругой среды или ее части, возникающие под действием механического возмущения, распространяющиеся в упругой среде. Частный случай акустических волн – слышимый человеком звук. Отсюда происходит термин акустика (от греческого akustikos – слуховой)область физики, исследующая упругие колебания волны от самых низких до самых высоких частот, и в этом числе слышимый человеком звук [1]. В зависимости от частоты акустические волны подразделяются на инфразвуковые, звуковые, ультразвуковые и гиперзвуковые (Табл. 1). Границы между первыми тремя диапазонами определяются свойствами человеческого слуха. Граница четвертого диапазона определяется предельной частотой акустических волн, распространяющихся в воздухе. Таблица 1 Диапазон частот акустических волн
Название волн Свойства Частота, Гц
Инфразвуковые Ниже границы слышимости 109

Физическая характеристика громкости звука — уровень звукового давления. Измеряется в децибелах (дБ). Например, 30 дБ — шепот. 50-65 дБ — тихий / громкий разговор. 70-80 дБ — крик. 100 дБ — tutti симфонического оркестра. 140 дБ — самолет на старте [2].

Чувствительность акустической системы — характеристика, показывающая, насколько громким будет звучание при подаче на динамик сигнала определенной мощности. Чувствительность измеряется в дБ/Вт/м. Например, значение чувствительности в 93 дБ/Вт/м говорит о том, что при подаче мощности 1 Вт от усилителя динамик создает на расстоянии 1 м на оси излучения уровень звукового давления 93 дБ. Типовые значения чувствительности современных акустических систем лежат в диапазоне 84 -97 дБ/Вт/м.

Помимо полезной составляющей, акустика может иметь и неполезную составляющую, от которой стремятся избавиться.Шум — беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры [3]. Источниками акустического шума могут служить любые колебания в твёрдых, жидких и газообразных средах.

Как было сказано ранее суммарный шум, который издает подводная лодка, может рассекретить местоположение объекта под водой. Чтобы уменьшить фактор обнаружения посредством гидролокации, нужно определить источники шумов на подводной лодке и избавится от них. Так как современная подводная лодка в обычном погруженном состоянии не может обновлять свой внутренний воздух свежим атмосферным воздухом, на ней должна быть создана искусственная среда. Так как лодка может находиться под водой долгое время, одной из самых насущных проблем для людей, находящихся на борту субмарины, является создание комфортной и здоровой среды обитания. Данную среду обитания помогает установить вентилятор, который и является одним из источников шумов [4].

Для правильной оценки акустических параметров вентилятора необходимо иметь шумовые (акустические) характеристики, определение которых предусматривается действующими стандартами и техническими условиями на вентиляторы.

Шумовые характеристики вентиляторов определяются по ГОСТ 12.2.028–84 и должны быть указаны в паспортах и каталогах вентиляционного оборудования, а при их отсутствии должны рассчитываться. Для вентилятора как источника шума характерно существование трех независимых путей распространения шума: по воздуховодам, на всасывании и нагнетании и через стенки корпуса в пространство, окружающее вентилятор (вокруг вентилятора).

В большинстве случаев весьма эффективной мерой борьбы с шумом в системе вентиляции является рациональный выбор параметров и качества этой системы на стадии ее проектирования, в частности, выбор состава, протяженности, оптимального количества подаваемого воздуха, выбор вентилятора, размеров воздуховодов и скорости потока в них, компоновки арматуры.

Источниками шума в вентиляционных системах являются работающий вентилятор, электродвигатель, подшипники, воздухораспределители, воздухозаборные устройства.

По природе возникновения различают аэродинамический и механический шум. Аэродинамический шум вызывается пульсациями давления при вращении колеса вентилятора с лопатками, а также за счет интенсивной турбулизации потока. Механический шум возникает в результате вибрации стенок кожуха вентилятора, в подшипниках, в передаче.

Существуют следующие технические решения. Для уменьшения шума и вибрации проводится ряд предупредительных мер [5]:

  • тщательная балансировка рабочего колеса вентилятора;

  • применение вентиляторов с меньшим числом оборотов (с лопатками, загнутыми назад и максимальным КПД);

  • крепление вентиляторных агрегатов на виброоснованиях;

  • присоединение вентиляторов к воздуховодам с помощью гибких вставок;

  • обеспечение допустимых скоростей движения воздуха в воздуховодах, воздухораспределительных и воздухоприемных устройствах.

Если перечисленных мероприятий недостаточно, для снижения шума применяют специальные шумоглушители. Шумоглушители бывают трубчатые, пластинчатые и камерного типа. Необходимость установки шумоглушителей определяется на основании акустического расчета вентиляционной системы.

При выборе подшипников также предъявляются требования к шумности. Для снижения шума лучше всего применять однорядные радиальные шариковые подшипники; подшипники других типов создают более высокий уровень шума и вибрации. Так, уровень вибрации роликовых подшипников выше, чем у шариковых, на 5 дБ и более. Такую же величину составляет превышение уровней вибрации подшипников тяжелой серии по сравнению с подшипниками средней серии.

Устранение перекосов, осевых люфтов, а также чрезмерно больших радиальных и осевых натягов уменьшает шум подшипников на 5—10 дБ 6. Уменьшение размера подшипника на один номер сопровождается снижением его шума на 1—3 дБ. Грязь и прочие инородные тела в подшипнике и в смазочном материале могут вдавливаться в дорожку качения и привести к уве­личению шума. Целесообразно также применение специальных малошумных подшипников, производство которых освоено промышленностью. Радикальным средством снижения шума и вибрации подшипников является переход на подшипники скольжения, имеющие уровни шума на 15—20 дБ ниже, чем у подшипников качения, особенно в области высоких частот 7.

Использование малошумных электродвигателей с уровнем шума, не превышающим 50— 60 дБ, также является одним из технических решений. Для создания такого электродвигателя применяются следующие меры 8:

1. Большое значение имеет правильная центровка электродвигателя с приводным механизмом, совместная их балансировка, применение амортизаторов и эластичных муфт.

2. Изменяются конфигурация и размеры магнитопровода для снижения магнитного шума электродвигателей, В частности, уменьшению шума способствуют выбор благоприятного соотношения чисел пазов статора и ротора, скос пазов статора или ротора на одно зубцовое деление, уменьшение раскрытия пазов, снижение индукции в воздушном зазоре и увеличение зазора, укорочение шага обмотки и т. д.

А вот применение электродвигателей большей мощности, используемой не полностью для устранения шума в вентиляционной системе не целесообразно, так как запас мощности позволяет ослабить вентиляцию, что в условиях отсутствия свежего воздуха, негативно скажется на жизнедеятельности людей, находящихся на субмарине. Хотя ослабление вентиляции позволяет снизить шум.

Следующая область, которая занимается уменьшением шума, является использование специальных материалов. Для монтажа звукоизолирующих кожухов следует применить два типа материалов – поглощающие избыточные звуки и шумоизолирующие 9. Они делятся на мягкие материалы и полужесткие материалы.

В основе изготовления мягких материалов лежит минеральная вата, стекловолокно, а также это может быть войлок, джут, обычная вата и т.д. Такой материал обладает высокими звукопоглощающими свойствами, звукопоглощающий коэффициент составляет более 0, 7 или 70%. Также большую роль играет небольшая объемная масса – около 70 кг/м3.

Полужесткие материалы представляют собой плиты из спрессованной минеральной ваты или стекловолокна. Также это материалы, которые имеют ячеистое строение – например, пенополиуретан. Звукопоглощающий коэффициент лежит в пределах между 0,5 и 0,75 (от 50% до 75%). Объемная масса больше и находится в промежутке между 80 и 130 кг/м3.

Также существуют сэндвич-системы – это многослойная конструкция, которая состоит из нескольких слоев строительных материалов: жесткие слои снаружи, мягкие и плотные слои внутри. Жесткими слоями могут быть плиты перекрытия и листы гипсокартона. Они играют звукоизоляционную роль и звукоизоляция прямо пропорциональна их плотности. Мягкий и плотный материал играет роль звукопоглотителя. Здесь находят применение материалы, у которых волокнистая структура: стекловата, минеральная вата и т.д. Большое значение имеет толщина такого материала, она должна быть не менее 5см и заполнять внутреннее пространство на менее чем наполовину.

В настоящее время существует материал, производством которого занимается компания «ШумОФФ», имеющий коэффициент поглощения шума примерно 0.95 9.

Выгодные особенности:

1. Материал обладает способностью медленно (в течение 40 минут) восстанавливаться после длительного сжатия. Тем самым обеспечивается легкий монтаж двух поверхностей большой площади между которыми монтируется уплотнитель «Герметон». Материал, восстанавливаясь, заполняет пустоты, не позволяя в дальнейшем панелям издавать скрипы и создает дополнительную герметизацию, уменьшая нежелательное воздействие внешнего шума.

2. Пропитка материала обеспечивает его специальные свойства по горючести. Скорость его горения менее 10 м/мин (ГОСТ 25076). Другими словами, если убрать открытое пламя, материал не разгорается, а затухает. Это свойство очень важно, так как материал часто применяется для обработки стыков воздуховодов в автомобиле и при обработке электропроводки и колодок электропроводов (чтобы от них не возникало нежелательных звуков, стуков во время движения). Пропитка, так же, значительно снижает способность воды попадать во внутрь материала, что позволяет вести обработку поверхностей с возможным попаданием воды (например, внутренняя часть двери автомобиля, окна ПВХ).

3. Клеевой монтажный слой обладает стойкостью к воде, что позволяет работать материалом внутри дверей автомобиля, где возможно попадание воды через уплотнитель в районе стекла.

4. Материал не выделяет запаха и не окрашивает прилегающие поверхности в процессе эксплуатации, что свойственно некоторым подобным продуктам с битумной пропиткой (имеют высокую горючесть, запах, маслянистые пятна на монтажных панелях).

В ходе работы были выявлены основные причины шума в вентиляторах и вентиляторных системах, проведен их анализ и приведены практические советы по снижению шума, будь то технические решения или использование специальных материалов. Хочется отметить, что интеграция различных технических решений позволит повысить качество снижения шума.

Литература

  1. Акустика. URL: https://ru.wikipedia.org/wiki/%D0%90%D0%BA%D1%83%D1%81%D1%82%D0%B8%D0%BA%D0%B0 (дата обращения 6.03.2017).

  2. Что такое децибелы? URL: http://www.avclub.pro/articles/audio-video-ot-a-do-ya/izmereniya-edinitsy-izmereniya-detsibely/ (дата обращения 6.03.2017).

  3. Шум. URL: https://ru.wikipedia.org/wiki/%D0%A8%D1%83%D0%BC (дата обращения 6.03.2017).

  4. R.W. Trent. Кондиционирование воздуха на подводных лодках. URL: https://www.abok.ru/for_spec/articles.php?nid=2125 (дата обращения 6.03.2017).
  5. Шумопоглотители. URL: http://enginerishka.ru/ventilyaciya/shumoglushiteli.html (дата обращения 6.03.2017).

  6. Борьба с шумом электродвигателей

http://delta-grup.ru/bibliot/16/74.htm (дата обращения 6.03.2017).

  1. Механический шум. URL: http://www.un-s.ru/mech_shum.html (дата обращения 6.03.2017).

  2. Борьба с шумом от электродвигателей. URL: http://delta-grup.ru/bibliot/16/74.htm (дата обращения 6.03.2017).

  3. Шумоизоляция оборудования. URL:http://www.shumovnet.ru/practice/shumoizoljacija_oborudovanija/(дата обращения 6.03.2017).

  4. Шумофф. URL: http://xn--54-7lcixia1a.xn--p1ai/index/shumopogloshhenie/0-6 (дата обращения 6.03.2017).

  5. Гольдштейн А.Е. Физические основы получения информации: учебник для прикладного бакалавриата/ А.Е. Гольдштейн. – М.: Издательство Юрайт, 2016. – 291с. – Серия: Университеты России.

  6. Дмитриев В.С., Иванова В.С. Основы теории колебаний и моделирование колебательных систем в технике. Часть I / В.С. Дмитриев, В.С. Иванова; Национальный исследовательский Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2012. – 216с.

  7. Википедия – свободная энциклопедия [электронный ресурс] - https://ru.wikipedia.org/wiki/Акустика (дата обращения 26.12.2016г)

9

Просмотров работы: 569