ПОИСК ЭНЕРГОЭФФЕКТИВНЫХ РЕЖИМОВ РАБОТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА КАЛОРИФЕРНЫХ И ВЕНТИЛЯТОРНЫХ УСТАНОВОК - Студенческий научный форум

IX Международная студенческая научная конференция Студенческий научный форум - 2017

ПОИСК ЭНЕРГОЭФФЕКТИВНЫХ РЕЖИМОВ РАБОТЫ АВТОМАТИЗИРОВАННОГО ЭЛЕКТРОПРИВОДА КАЛОРИФЕРНЫХ И ВЕНТИЛЯТОРНЫХ УСТАНОВОК

Андросова А.С. 1, Волотковская Н.С. 1
1Политехнический институт (филиал) ФГАОУ ВО «СВФУ им. М.К. Аммосова» в г. Мирном
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
На всех подземных горнодобывающих предприятиях с целью обеспечения безопасности осуществления производственного процесса согласно правилам воздух, подаваемый в воздухоподающие стволы в холодное время года, необходимо подогревать в шахтных калориферных установках (ШКУ) до температуры не ниже +2 °С. В настоящее время широкое применение нашли газовые и водяные, а в условиях Крайнего Севера – электрические ШКУ. В связи с тем, что объемы подаваемого в шахту (рудник) воздуха значительны по своей величине, на его нагрев также требуется затрачивать колоссальное количество энергоресурсов.

Для работы газовых и водяных ШКУ используется природный газ (на нагрев воды в котельной – для водяных; на разогрев теплообменной камеры – для газовых), для электрических – электрическая энергия. При этом нередко наблюдается ситуация, когда температура подаваемого в шахту (рудник) воздуха значительно превышает температуру +2 °С, что вызывает перерасход энергоресурсов, затрачиваемых на подогрев воздуха.

Кроме того, перегрев воздуха вызывает еще одно негативное явление – возникновение отрицательной общешахтной (общерудничной) естественной тяги (тепловой депрессии) между шахтными стволами, вызванной разностью плотностей воздуха в них. Действуя встречно требуемому направлению движения воздуха, общешахтная (общерудничная) естественная тяга препятствует работе главной вентиляторной установки (ГВУ), увеличивая ее энергопотребление.

Регулирование режима работы вентиляторных установок обусловлено, главным образом, сезонными и суточными изменениями температуры, влажностью и плотностью воздуха, его запыленностью и загазованностью, которая преимущественно зависит от характера производств вентилируемого помещения. Для горного производства наиболее характерно именно запыленность и загазованность выработок, а для процессов обогащения – запыленность цехов и помещений обогатительных фабрик.

Регулируемые электропривода вентиляторных установок используются в системах проветривания тупиковых выработок, калориферных установках для обогрева шахтных стволов в холодное время года, калориферных установках для обогрева производственных помещений, воздуходувок в котельных для сжигания топлива и т.д.

Разнообразие ситуаций и факторов не позволяет сформировать автоматическое управление регулируемым электроприводом вентиляторных установок. Здесь возможен вариант регулирования в ручном режиме управления.

Существуют большие перспективы использования систем автоматического управления угловой скоростью воздуходувок в калориферных системах отопления. Такие системы обычно работают в сочетании воздуходувок с теплоносителями. Калориферы могут быть электрическими или водяными. Оптимальное сочетание количества подогретого воздуха с объемом его подачи требует управлять как воздуходувной установкой, так и теплоносителем. Эта задача требует регулировать угловые скорости воздуходувки и теплофикационного насоса в контуре водяного отопления или электрического нагревателя. Задача осложняется тем, что требуется учитывать температуру атмосферного воздуха. Алгоритм управления необходимо строить таким образом, чтобы обеспечить температурный комфорт отапливаемых помещений, цехов, стволов шахт и рудников в холодный период времени при минимальных затратах на теплоносители.

Небольшие вентиляторы главного проветривания с мощностью электродвигателя до 160 кВт, обычно используют низковольтные асинхронные двигатели с короткозамкнутым ротором. При мощности от 160 до 400 кВт находят применение низковольтные и высоковольтные асинхронные двигатели с фазным ротором, а при больших мощностях используются высоковольтные синхронные двигатели. В вентиляторах местного проветривания, калориферных установках используются низковольтные асинхронные двигатели с короткозамкнутым ротором.

Выбор регулируемого электропривода для вентиляторных установок принципиально не отличается от выбора привода для насосов. Для вентиляторов, оснащенных асинхронными электродвигателями с короткозамкнутым ротором мощностью до 160 кВт, используется преимущественно низковольтный частотно-регулируемый электропривод.

Для мощных вентиляторов с высоковольтными синхронными электродвигателями мощностью до 4000 кВт используются бестрансформаторные высоковольтные частотно-регулируемые электроприводы с автономным инвертором тока.

Для электроприводов вентиляторных установок мощностью свыше 2000 кВт, оснащенных синхронными электродвигателями возможно применение вентильного двигателя. Следует отметить, что в горной промышленности отсутствуют примеры использования электропривода вентиляторных установок по системе вентильного двигателя. Синхронный частотно-регулируемый электропривод оказывается значительно сложнее и дороже, чем электропривод по системе вентильного двигателя. Поэтому имеются значительные перспективы использования такой системы для вентиляторных установок

Энергетический эффект в вентиляторных установках можно получить, если требуется обеспечение переменной подачи для оптимизации технологического процесса. В этом случае экономически оправдано применение регулируемого электропривода, который в большинстве случаев является дорогостоящим и требует квалифицированного персонала.

Анализ режимов работы вентиляторных установок выполняется для определения основных технологических параметров, необходимых для проектирования систем автоматического управления этих установок. К числу этих параметров относятся:

- наибольшая подача вентилятора за расчетный период (сутки, месяц или год);

- наименьшая подача за расчетный период;

- необходимое давление, соответствующее наибольшей подаче;

- необходимое давление, соответствующее наименьшей подаче;

- средний диапазон колебаний подачи или давления.

Определяемые технологические параметры и другие исходные данные, используемые для построения системы автоматического управления вентиляторным агрегатом, должны в наибольшей степени соответствовать их фактическим значениям. Значительная часть исходных данных определяется путем построения графиков совместной работы вентиляторов и сети. При этом используются напорные характеристики вентиляторов, характеристики воздуховодов или сети. При работе вентиляторов на воздуховоды или сеть пользуются понятием эквивалентного отверстия.

Результаты построения графиков совместной работы вентилятора и воздуховодов во многом зависят от степени соответствия этих характеристик фактическому состоянию вентиляторов и воздуховодов, что особенно важно для вентиляторных агрегатов большой мощности.

При выполнении анализа режимов работы вентиляторных установок систематизируются данные о годовом потреблении электроэнергии и годовой производительности, об удельных расходах электроэнергии, затрачиваемой на подачу воздуха. Эти данные позволяют подготовить технико-экономическое обоснование на выполнение энергосберегающих проектов.

Принципиальные режимы работы вентиляторных установок регулируются следующими способами:

- дросселирование воздушного потока на всасывающей линии установки с помощью заслонок и задвижек;

- закручивание входящего в рабочее колесо воздуха с помощью специальных направляющих аппаратов, диффузоров и прочих устройств;

- ступенчатое регулирование частоты вращения рабочего колеса механическим или электромашинным способом (изменением числа пар полюсов многоскоростного электродвигателя);

- плавное регулирование частоты вращения рабочего колеса средствами регулируемого электропривода.

Используются в вентиляторных установках и комбинированные способы регулирования режимов их работы, например, закручивание потока воздуха с помощью осевого направляющего аппарата и изменение частоты вращения многоскоростным электродвигателем.

Список литературы:

1. Бондарев В.А., Семёнов А.С. // Современные наукоемкие технологии. 2014. № 5-1. С. 228-229.

2. Голубцов Н.В., Ефремов Л.Г., Федоров О.В. // Вестник Чувашского университета. 2014. № 2. С. 18-22;

3. Грунтович Н.В., Грунтович Н.В., Ефремов Л.Г., Федоров О.В. // Вестник Чувашского университета. 2015. № 3. С. 40-48;

4. Егорова А.А., Семёнов А.С., Петрова М.Н. // Современные проблемы науки и образования. 2015. № 2-2. С. 840;

5. Каледина Н.О. Вентиляция производственных объектов / учебное пособие. – 4-е изд., стер. – М.: Издательство МГГУ, 2008. – 193 с.;

6. Петрова М.Н., Семёнов А.С. // Международный студенческий научный вестник. 2016. № 3-2. С. 312-314;

7. Рушкин Е.И., Семёнов А.С. // Технические науки - от теории к практике. 2013. № 20. С. 34-41;

8. Семёнов А.С. // Вестник Северо-Восточного федерального университета им. М.К. Аммосова. 2014. Т. 11. № 1. С. 51-59;

9. Семёнов А.С. // Естественные и технические науки. 2013. № 4 (66). С. 296-298;

10. Семёнов А.С. // Международный журнал прикладных и фундаментальных исследований. 2014. № 9-2. С. 29-34;

11. Семёнов А.С. // Международный журнал прикладных и фундаментальных исследований. 2016. № 5-3. С. 391-395;

12. Семёнов А.С. // Мир современной науки. 2013. № 1 (16). С. 12-15;

13. Семёнов А.С. // Международный студенческий научный вестник. 2016. № 3-2. С. 314-319;

14. Семёнов А.С. Моделирование автоматизированного электропривода / методические указания по выполнению лабораторных работ. – М.: Издательство «Спутник+», 2012. – 60 с.;

15. Семёнов А.С. // Современные наукоемкие технологии. 2014. № 5-1. С. 232-236;

16. Семёнов А.С., Кугушева Н.Н., Хубиева В.М. Моделирование режимов работы электроприводов горного оборудования / монография. – Saarbrucken: LAP LAMBERT, 2013. – 112 с.;

17. Семёнов А.С., Кугушева Н.Н., Хубиева В.М. // Фундаментальные исследования. 2013. № 8-5. С. 1066-1070;

18. Семенов А.С., Кугушева Н.Н., Хубиева В.М., Матул Г.А. // Естественные и технические науки. 2014. № 3 (71). С. 165-171;

19. Семёнов А.С., Хазиев Р.Р. // Международный студенческий научный вестник. 2015. № 5-5. С. 694-698;

20. Семёнов А.С., Хубиева В.М., Петрова М.Н. // Фундаментальные исследования. 2015. № 10-3. С. 523-528;

21. Фащиленко В.Н. Регулируемый электропривод насосных и вентиляторных установок горных предприятий / учебное пособие. – М.: Издательство «Горная книга», 2011. – 260 с.;

22. Хубиева В.М., Петрова М.Н., Семёнов А.С. Проектирование электропривода подборщика путем моделирования. – Saarbrucken: LAP LAMBERT, 2015. – 96 с.;

23. Черенков Н.С., Семёнов А.С. // Международный студенческий научный вестник. 2015. № 3-4. С. 417-419;

24. Шевчук В.А., Семёнов А.С. // Международный студенческий научный вестник. 2015. № 3-4. С. 419-423;

25. Semenov A.S. Lower the economic losses in electric networks // Международный журнал экспериментального образования. 2013. № 12. С. 57-59.

Просмотров работы: 443