ПРИМЕНЕНИЕ ТЕПЛОУТИЛИЗАТОРОВ ДЛЯ ПОВЫШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ - Студенческий научный форум

VIII Международная студенческая научная конференция Студенческий научный форум - 2016

ПРИМЕНЕНИЕ ТЕПЛОУТИЛИЗАТОРОВ ДЛЯ ПОВЫШЕНИЯ ЭНЕРГОЭФФЕКТИВНОСТИ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Хорев С.В. 1, Антонов А.С. 1
1Нижегородский государственный архитектурно-строительный университет
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF
Вопрос применениявторичных энергоресурсов для теплоснабжения промышленных зданий становится все более значимым. Для использования тепловых вторичных энергоресурсов, образующихся при работе технологических установок и энергетического оборудования на промышленных предприятиях, необходима установка теплоутилизационного оборудования. При использовании теплоутилизатора в системе вентиляции требуется меньшая мощность калорифера на подогрев приточного воздуха, тем самым уменьшается количество энергии, необходимое для его работы.

Ключевые слова: теплоутилизатор, рекуператор, повышение энергоэффективности, энергосбережение.

The issue of waste energy for heating of industrial buildings is becoming increasingly important. To use a secondary heat energy generated during the processing units and power equipment in industrial plants, you must install a heat recovery equipment. When using the heat exchanger in the ventilation system requires less power heater for heating the incoming air, thereby reducing the amount of energy required for its operation.

Keywords: heat exchanger, heat exchanger, energy efficiency, energy saving.

Использование вторичных энергоресурсов для теплоснабжения промышленных зданий приобретает все большее значение и масштабы. Экономически это вполне оправдано. Степень использования так называемых «горючих» вторичных энергоресурсов, тепловых выбросов из промышленных печей, теплоэнергетических установок, систем отопления, вентиляции и кондиционирования воздуха превышает 90%. Годовой объем «тепловых» вторичных энергоресурсов в нашей стране составляет более 4,5 млрд.ГДж; из них более половины относится к высокопотенциальным вторичным энергоресурсам- это теплота продуктов производства, теплота уходящих газов (t>300С), энергия избыточного давления газов и другие низкопотенциальные вторичные энергоресурсы - это теплота промышленных стоков, конденсата, уходящих газов (t>300C), оборотного водоснабжения, вентиляционных выбросов, биологическая теплота животных и др. Во всех случаях экономическая задача заключается в том, чтобы, в первую очередь, использовать те источники вторичных энергоресурсов, при которых эффект будет наибольшим. Среди множества тепловых вторичных энергоресурсов, образующихся при работе технологических установок и энергетического оборудования на промышленных предприятиях, в источниках теплоты можно выделить основные, для использования которых необходима установка теплоутилизационного оборудования: теплота уходящих дымовых газов котлоагрегатов, печей и других топливоиспользующих установок; теплота сжатого воздуха компрессорных (нагнетательных) установок; теплота охлаждающей воды и других жидкостных потоков (в том числе загрязненных сточных вод) от технологического оборудования; теплота парогазовых потоков от сушильных установок; теплота вытяжного воздуха систем вентиляции и кондиционирования воздуха и некоторые другие. Утилизация теплоты водяных, воздушных и парогазовых потоков может быть осуществлена как с помощью оборудования, выпускаемого серийно, так и разрабатываемого (не стандартизированного). Теплоутилизатор – это регенератор (рекуператор) с направленным движением теплоносителя, предполагающий наличие локальной системы вентиляции с одновременной утилизацией теплоты воздуха, удаляемого из помещения, в системах кондиционирования и вентиляции. Движение воздуха в теплоутилизаторе осуществляется сразу в двух направлениях, при этом скорость движения остается одинаковой. Говоря о множестве различных теплоутилизаторов можно рассмотреть наиболее распространенные виды оборудования:

-Теплоутилизаторы рекуперативные (пластинчатые или с промежуточным теплоносителем);

-Теплоутилизаторы регенеративные вращающиеся.

Регенеративный теплоутилизатор — теплообменный аппарат, в котором теплота передается поочередным соприкосновением нагретой и холодной среды с поверхностями одной и той же теплоаккумулирующей насадки. Регенеративные теплоутилизаторы бывают стационарные, переключающиеся и вращающиеся.

Рекуперативный теплоутилизатор – теплообменнник, в котором теплота от одного теплоносителя к другому передается через разделительную стенку. По виду теплоносителя рекуперативные теплоутилизаторы бывают воздухо-воздушные и воздухо-жидкостные. Воздухо-воздушные рекуперативные теплоутилизаторы по конструктивным признакам разделяют на пластинчатые и кожухотрубные. Пластинчатые бывают с гладкими, треугольными, U-образными и П-образными каналами; кожухотрубные состоят из пучка труб, помещенных в кожух. По трубам проходит нагреваемый (приточный) воздух, в межтрубном пространстве — вытяжной. В нижней части корпуса предусматривают штуцер для удаления конденсата, образующегося при охлаждении вытяжного воздуха ниже температуры точки росы. В воздухо-жидкостных рекуперативных теплоутилизаторах теплообменные элементы для увеличения площади поверхности осеребрены со стороны воздушного потока. В качестве рекуперативных теплоутилизаторов можно использовать калориферы общего назначения или специально выпускаемые теплообменные аппараты, если применяемые жидкости и вытяжной воздух не оказывают на них агрессивного воздействия.

Рекуперативный пластинчатый теплоутилизатор состоит из корпуса с подводящими и отводящими патрубками и пакетами пластин. Теплообменная поверхность (пакет пластин) выполнена из непрерывной алюминиевой ленты толщиной 0,5 мм, сложенной в поперечном направлении «гармошкой» и образующей чередующиеся каналы для прохода воздушных потоков. Теплообменивающиеся среды движутся по раздельным каналам. Схема движения потоков воздуха может быть противоточной или прямоточной. Торцевые поверхности пакета пластин герметизируются. Конструкция аппарата практически полностью исключает возможность перетекания удаляемого воздуха в поток приточного. Утилизация теплоты в рекуперативных пластинчатых теплоутилизаторах достигается в результате теплообмена между движущимися потоками воздуха. Передача теплоты осуществляется через стенки каналов: при противоточном направлении – максимальный теплообмен, при прямоточном - минимальный. Теплотехнической характеристикой теплоутилизатора является относительный перепад температур (коэффициент эффективности). Для снижения металлоемкости разработаны пленочные рекуперативные теплоутилизаторы, состоящие из пакета отдельных деревянных рамок, на которых закреплена гибкая пленка так, чтобы можно было на ее поверхности создавать дискретные «волны», вызывающие ее вибрацию (под давлением движущегося воздуха), и этим увеличивать теплопередачу в утилизаторе. Из-за почти полного отсутствия металла стоимость такого теплоутилизатора самая низкая по сравнению с другими типами рекуперативных и регенеративных теплоутилизаторов; кроме того, не требуется проводить ремонтов и межремонтного обслуживания. Интенсификация теплоотдачи в аппарате позволяет уменьшить его габариты на 35% по сравнению с обычным пластинчатыми теплоутилизаторами.

Теплоутилизаторы с промежуточным теплоносителем. Достоинства установок утилизации тепла с промежуточным теплоносителем заключается в полной аэродинамической изоляции потоков приточного и удаляемого воздуха, исключающей перетекание вредных примесей, а также в возможности размещения приточных и вытяжных вентиляционных центров на значительном расстоянии друг от друга и объединения в единую систему любого числа приточных и вытяжных установок. Недостаток утилизаторов с промежуточным теплоносителем- повышенная металлоемкость, обусловленная малым потенциалом теплообменивающихся сред и низкой теплотехнической эффективностью применяемых аппаратов. Проектом дополнительного раздела СНиП «Использование тепловых вторичных энергетических ресурсов» для утилизации теплоты воздуха, удаляемого из помещения с производствами категорий А, Б, Е, а также содержащего взрывоопасные, горючие, легко воспламеняющиеся или вредные вещества 1-го и 2-го классов опасности, рекомендуется использовать рекуперативные теплообменники с промежуточным теплоносителем. Регенеративные теплообменники применять в этом случае запрещено, а рекуперативные типа «воздух-воздух» должны устанавливаться вне здания либо в вентилируемых вентиляционных камерах. Известны схемы утилизации тепла с помощью устанавливаемых в потоке удаляемого и наружного воздуха поверхностных теплообменников с промежуточной циркуляцией воды или антифриза - растворов хлоридов кальция, лития, натрия, нитрата натрия. Такие решения обеспечивают ощутимую экономию теплоты на нагрев приточного воздуха, экономически эффективны и надежны в эксплуатации.

В современных системах вентиляции и кондиционирования воздуха применяется самое разнообразное оборудование: нагреватели, увлажнители, различные виды фильтров, регулируемые решетки и многое другое. Все это необходимо для достижения требуемых параметров воздуха, поддержания или создания комфортных условий для работы в помещении. На обслуживание всего этого оборудования требуется достаточно много энергии. Эффективным решением сбережения энергии в системах вентиляции становятся теплоутилизаторы. Основной принцип их работы – нагрев потока воздуха, подаваемого в помещение, с использованием теплоты потока, удаляемого из помещения. При использовании теплоутилизатора требуется меньшая мощность калорифера на подогрев приточного воздуха, тем самым уменьшается количество энергии, необходимое для его работы.

Список литературы

  1. Кобелев Н. С. Энергосберегающие технологии, трубопроводы и оборудование систем теплогазоснабжения и вентиляции: монография / Н. С. Кобелев, Э. В. Котенко, А. Е. Полозов. - Курск : КурскГТУ, 2005. - 200 с.

  2. Энергосбережение (справочное пособие)/ В.Е.Батищев, Б.Г.Мартыненко, С.Л.Сысков, Я.М.Щелоков. Екатеринбург, 1999. – 304с.

  3. Энергосбережение. - Изд. офиц. ; введен впервые. - Москва : ИПК Издательство стандартов, 2004. - 148 с.

References

  1. N.S. Kobelev Energy-saving technologies, equipment and piping systems, heat and ventilation: monograph / NS Kobelev, EV Kotenko, AE runners. - Kursk KurskGTU, 2005. - 200 p.

  2. Energy savings (handbook) / V.E.Batischev, B.G.Martynenko, S.L.Syskov, Ya.M.Schelokov. Ekaterinburg, 1999. - 304 p.

  3. Energy-saving. - Ed. official. ; first introduced. - Moscow: Publishing IPC Standards, 2004. - 148 p.

Просмотров работы: 1972