КИСЛОТНО-ОСНОВНОЕ РАВНОВЕСИЕ. ПОТЕНЦИОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

КИСЛОТНО-ОСНОВНОЕ РАВНОВЕСИЕ. ПОТЕНЦИОМЕТРИЧЕСКОЕ ТИТРОВАНИЕ

Кожухова И.И. 1
1Московский Государственный Областной Социально Гуманитарный Институт
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Кислотно-основное равновесие – относительное постоянствосоотношения кислота-основание внутренней среды живого организма, является составной частью гомеостаза. Внутриклеточные и внеклеточные жидкости всех живых организмов, как правило характеризуются постоянным значением рН, находящегося в интервале от 6,8 до 7,8, которое поддерживается с помощью различных буферных систем (бикарбонатная буферная система, фосфатная буферная система, белковая буферная система, гемоглобиновая буферная система.), входящих в состав тканей.

Метод кислотно-основного титрования используется в практике клинических, судебно-экспертных и санитарно-гигиенических исследований, а также при оценке качества лекарственных препаратов.

Потенциометрическое титрование позволяет решать как аналитические задачи – определение концентрации веществ, так и физико-химические – определение произведений растворимости, констант устойчивости, протолитической диссоциации.

Цель работы: рассмотреть равновесия в растворах кислот и оснований и изучить потенциометрический метод анализа.

Задачи работы:

- изучить теории кислот и оснований;

- рассмотреть кислотно-основные взаимодействия с позиций различных теорий;

- рассмотреть потенциометрический метод анализа;

- изучить потенциометрическое титрование;

- проверить методику потенциометрического определения концентрации соляной и борной кислот при их совместном присутствии.

Теоретическаячасть

Теории кислот и оснований

Теория кислот и оснований Аррениуса

Согласно созданной Аррениусом теории электролитической диссоциации, кислотами принято считать вещество, выделяющее при ионизации (диссоциации на ионы) ион водорода H+ , а основанием - вещество, выделяющее при ионизации гидроксид-ион ОН- .

В соответствии с этими представлениями типичными кислотами являются минеральные кислоты (хлороводородная, азотная, серная, ортофосфорная и другие), органические кислоты, например, одноосновные карбоновые кислоты RCOOH, где R – органический радикал и т.д. Все они при диссоциации выделяют ион водорода, например:

Согласно теории электролитической диссоциации к типичным основаниям относятся гидроксиды натрия NaOH, калия КОН, кальция Ca(OH)2 , аммиак NH4OH в водных растворах и т.д. При ионизации они выделяют гидроксид ионы, например:

Однако в рамках этих представлений в число оснований не включались многие вещества, которые в растворах ведут себя как основания. Так, например, пиридин, молекула которого не имеет гидроксильных групп, реагируя с водой, дает группу ОН- :

C5H5N+H2O ↔ C5H5NH++OH-

и ведет себя в растворе как слабое основание, хотя источником гидроксильной группы является не сама молекула пиридина, а молекула воды, в реакцию с которой вступила молекула пиридина. [1]

Протолитическая (протонная) теория кислот и оснований.

Теориябыла предложена в 1923 году независимо друг от друга датским учёным Й. Брёнстедом и английским учёным Т. Лоури. В ней понятие о кислотах и основаниях было объединено в единое целое, проявляющееся в кислотно-основном взаимодействии: А ↔ В + Н+ (А – кислота, В – основание). Согласно этой теории кислотами являются молекулы или ионы, способные быть в данной реакции донорами протонов, а основаниями являются молекулы или ионы, присоединяющие протоны (акцепторы протонов). Кислоты и основания получили общее название протолитов.

Сущностью кислотно-основного взаимодействия является передача протона от кислоты к основанию. При этом кислота, передав протон основанию, сама становится основанием, так как может снова присоединять протон, а основание, образуя протонированную частицу, становится кислотой. Таким образом, в любом кислотно-основном взаимодействии участвуют две пары кислот и оснований, названные Бренстедом сопряженными:

А1 + В2 ↔ А2 + В1

Одно и то же вещество в зависимости от условий взаимодействия может быть как кислотой, так и основанием (амфотерность). Например, вода при взаимодействии с сильными кислотами является основанием:

H2O + H+ ↔ H3О+,

а реагируя с аммиаком, становится кислотой:

NH3 + H2O ↔ NH4+ + OH.[4]

Теория кислот и оснований Льюиса.

Классическую электронную теорию химической связи предложил в 1916 г. американский химик Гилберт Ньютон Льюис (1875—1946). Кислота Льюиса - соединение, способное принять свободную электронную пару с образованием ковалентной связи (акцептор пары электронов), а основание Льюиса - соединение, способное предоставить электронную пару для образования ковалентной связи (донор пары электронов).

Основание → :NH3 + ̻H+ → NH4+

Кислота → ̻BF3 + F- → BF4-

Теория кислот и оснований Льюиса получила широкое распространение. Обобщенная теория кислот и оснований Усановича.

Наиболее общая теория кислот и оснований была сформулирована М. Усановичем в 1939 году. В основе теории лежит представление о том, что всякое кислотно-основное взаимодействие – это реакция солеобразования. Согласно этой теории "кислота – это частица, которая может отщеплять катионы, включая протон, или присоединять анионы, включая электрон. Основание – частица, которая может присоединять протон и другие катионы или отдавать электрон и другие анионы" (формулировка 1964 г.) Теория Усановича фактически отменяет один из основополагающих принципов классической химии – представления о классах кислот и оснований: "кислоты и основания – это не классы соединений; кислотность и основность – это функции вещества. Будет ли вещество кислотой или основанием, зависит от партнера". [1]

Кислотно-основные взаимодействия

Нейтрализация(отлат.neuter— ни тот, ни другой) — взаимодействиекислотсоснованиями, в результате которого образуется соль.

Эту реакцию можно рассмотреть по теории Аррениуса или по протонной теории.

К примеру, реакция взаимодействия гидроксида натрия и соляной кислоты: НСl + NaOH = NaCl + Н2О

HCl отдает H+ (согласно теории Аррениуса является кислотой).

NaOH отдает OH- ( согласно теории Аррениуса является основанием).

При рассмотрении такой реакции нейтрализации, как например, реакция бикарбоната натрия (пищевой соды) и уксусной кислоты, целесообразно применять протонную теорию.

CH3COOH+NaHCO3=CH3COONa+ Н2СО3 (H2O+CO2)

или в ионном виде: CH3COOH+HCO3- = CH3COO- + Н2СО3 (H2O+CO2)

CH3COOH (согласно протонной теории является кислотой);

HCO3- (согласно протонной теории является основанием).

Гидролиз солей также относится к кислотно-основному взаимодействию.[5]

Гидролиз соли – это взаимодействие ионов соли с молекулами воды с образованием малодиссоциирующих веществ.

Если гидролизу подвергается соль, образованная слабой кислотой и сильным основанием, например KCN, раствор имеет щелочную реакцию; это объясняется тем, что анион слабой кислоты частично связывает образовавшиеся при диссоциации воды ионы Н+ и в растворе остаётся избыток ионов OH-: CN- + H+OH- ↔ HCN + OH-

В соответствии с протонной теорией:

CN- (присоединяет протон, является основанием);

HOH (отдает протон, является кислотой).

Реакции гидролиза по теории Усановича:

CN- + H+OH- ↔ HCN + OH-

CN- присоединяет катион, является основанием.

H+OH- отдает катион, является кислотой.

NH4+ + H+OH- ↔ NH4OH + H+

NH4+ присоединяет анион, является кислотой.

H+OH- отдает анион, является основанием. [4]

Потенциометрия

Потенциометрия -электрохимический метод анализа. основанный на измерении потенциала электрода, погруженного в анализируемый раствор (Е), или, иначе, определении концентрции иона по величине ЭДС гальванического элемента.

В потенциометрии обычно применяют гальванический элемент, включающий два электрода, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом).

Первый электрод – это электрод, потенциал которого зависит от активности (концентрации) определяемых ионов в растворе, называется индикаторным.

Для измерения потенциала индикаторного электрода в раствор погружают второй электрод, потенциал которого не зависит от концентрации определяемых ионов. Такой электрод называется электродом сравнения.[2]

Потенциометрическое титрование

Метод потенциометрического титрования основан на определении точки эквивалентности по резкому изменению в ней ЭДС (максимальное напряжение электрического поля) электрохимической цепи, содержащей индикаторный электрод.

ЭДС = Е1- Е2

Точку эквивалентности при потенциометрических титрованиях определяют графическим методом на кривой титрования. Обычно используют одну из следующих видов кривых титрования: интегральную, дифференциальную или кривую Грана, вид которых приведен на рис. 1.

Рис.1. Кривые потенциометрического титрования: а- интегральная кривая титрования; б- дифференциальная кривая титрования; в- кривая титрования Грана

На интегральной кривой титрования (рис. 1, а) (E = f (VТ))точка эквивалентности соответствует середине скачка титрования.

Дифференциальная кривая титрования (рис. 1, б) - график функции

∆Е/∆V=f( VT).Точка эквивалентности находится в вершине кривой титрования. Дифференциальная кривая титрования дает более точное определение точки эквивалентности, чем интегральная.

Кривая титрования в методе Грана (рис. 1, в)- график функции

∆V/∆Е =f(VT). Точка эквивалентности находится на пересечении двух прямых линий. Этой кривой удобно пользоваться для определения точки эквивалентности при титровании разбавленных растворов.[6]

Экспериментальная часть

Задача экспериментальной части работы: проверить методику потенциометрического определения концентрации соляной и борной кислот при их совместном присутствии.

Оборудование и посуда: весы, рН-метр, стеклянный электрод (индикаторный), хлорсеребрянный электрод (электрод сравнения), магнитная мешалка, магниты, бюретка, стаканчики для титрования на 100 мл,пипетки на 10 мл и 20 мл,мерные колбы на 100 мл.

Реактивы:раствор NaOH, 0,1 н, раствор соляной кислоты и борной кислоты (Сн(HCl)=0,10 моль-экв/л),(Cн3ВО3)=0,08 моль-экв/л), глицерин.

Ход работы:

1. Приготовить раствор, содержащий соляную и борную кислоты: в 100 мл 0,1 н. растворе соляной кислоты растворить 0,5 г борной кислоты. Т.о., концентрация приготовленного раствора 0,10 моль-экв/л (по НCl) и 0,08 моль-экв/л (по Н3ВО3).

2. Титровать 0,1 н. раствором NaOH до первого скачка на кривой титрования (отмечать значение рН после прибавления каждой порции титранта).

3. Прибавить 10 мл глицерина и продолжить титрования до второго скачка на кривой титрования (отмечать значение рН после прибавления каждой порции титранта).

Определение хлороводородной и борной кислот в их смеси основано на последовательном титровании кислот раствором гидроксида натрия. Борную кислоту нельзя оттитровать непосредственно, вследствие малого значения константы диссоциации (рКд=9,24). Однако в присутствии α-диолов (глицерина, маннита и некоторых других веществ) кислотные свойства бороной кислоты усиливаются, и ее титрование в водном растворе становится возможным. Это объясняют образованием комплексных соединений вследствие наличия у атома бора свободной орбитали:

Одна связь В-О-С соответствует образованию простой эфирной связи, другая связь В-О-С образуется по донорно-акцепторному механизму.

Благодаря этому свойству борной кислоты удается провести также дифференцированное титрование ее смеси с какой-либо сильной кислотой (например,HCl). Сначала титруют смесь без добавления α-диола, при этом оттитровывается только сильная кислота. После этого добавляют в раствор, например, глицерин и оттитровывают Н3ВО3 как одноосновную кислоту. После окончания титрования кривая будет иметь два скачка и две точки эквивалентности.

4. На миллиметровой бумаге построить интегральную кривую титрования (рН =f (Vтитранта).

- на оси абсцисс откладывать объем титранта в мл;

- на оси ординат откладывать величину рН.

Кривая титрования представлена на рис.2.1.

Рис. 2.1. Интегральная кривая титрования

5. На миллиметровой бумаге построить дифференциальную кривую титрования (∆pH / ∆V=f( Vтитранта)).

- на оси абсцисс откладывать объем титранта в мл;

- на оси ординат откладывать величину ∆рН/∆V.

Кривая титрования представлена на рис.2.2.

Рис. 2.2. Дифференциальная кривая титрования

6. Провести расчет концентрации кислот в исследуемом растворе.

Vщ*Сщ= Vкк - формула, выражающая закон эквивалентов. С помощью этой формулы можно рассчитать нормальные концентрации кислот в исследуемом растворе.

Сн(HCl)= V (NaOH)*Сн (NaOH)/ Vпробы

Сн(HCl)=0,325л*0,1 моль-экв/л /0,3л=0,108 (моль-экв/л) - обьем титранта (NaOH), затраченный на титрование HCl и Н3ВО3 в растворе, находят по кривой титрования (интегральная, дифференциальная) по точкам эквивалентности.

Сн 3ВО3)=0,24л*0,1 моль-экв/л /0,3л=0,08(моль-экв/л)

Погрешности измерений:

Абсолютная ошибка │Ск,ист(X)-Ск(X) │

ΔС(HCl)= │0,10-0,108 │= 0,008

ΔC(Н3ВО3)= │0,08-0,08│=0

Относительная погрешность ε = (│Ск,ист(X)-Ск(X) │/Ск,ист(X))*100%

ε (HCl) = │0,10-0,108 │/0,10*100%=8%

ε (Н3ВО3) = │0,08-0,08│/0,08*100%=0%

Результаты представлены в таблице.

Таблица

Результаты титрования

Vисл. р-р,

мл

Сн(NaOH)

моль-экв/л

V(NaOH),

израсходованный на титрование HCl, мл

V(NaOH), израсходованный на титрование Н3ВО3, мл

Сн(HCl)

моль-экв/л

Cн3ВО3)

моль-экв/л

30

0,100

32,5

24

0,108

0,08

Вывод: проверена методика потенциометрического определения концентраций соляной и борной кислот при их совместном присутствии. Нормальная концентрация хлороводородной кислоты равна 0,108 моль-экв/л, борной 0,08 моль-экв/л. Методика пригодна для определения концентраций кислот в растворе.

Заключение

При выполнении работы:

1. Изучены теории кислот и оснований;

2. Рассмотрены кислотно-основные взаимодействия с позиций различных теорий;

3. Рассмотрен потенциометрический метод анализа;

4. Изучен метод потенциометрического титрования;

5. Проверена методика потенциометрического определения концентрации соляной и борной кислот при их совместном присутствии.

Метод потенциометрического титрования имеет ряд преимуществ перед прямой потенциометрией и титриметрией с визуальными индикаторами. В отличии от прямой потенциометрии здесь не существует искажения результатов за счет диффузионного потенциала, его влияние проявляется лишь в смещение кривой титрования вдоль оси потенциалов. Кроме того, нет необходимости знать коэффициент активности определяемого иона.

К числу преимуществ перед визуальным титрованием прежде всего относятся исключение субъективных ошибок, возможность анализа мутных и окрашенных растворов, документальность и сравнительно легкая автоматизация. Основное преимущество заключается в возможности дифференциального титрования компонентов смеси. Сочетание преимущества инструментального фиксирования конечной точки и влияния органического растворителя (метилизобутилкетон) на кислотно-основные свойства позволяет, например, зафиксировать раздельные скачки титрования для смеси пяти кислот – хлорной, соляной, салициловой, уксусной и фенола, что совершенно невозможно сделать с помощью индикатора.

Список использованной литературы

  1. Стромберг А.Г. Физическая химия – М.: Высшая школа, 2006.

  2. Харитонов Ю.Я. Аналитическая химия- М.: Высшая школа, 2003.

  3. Лурье Ю.Ю. Справочник по аналитической химии - М.: Химия, 1979.

  4. Шатенштейн А.И.Теории кислот и оснований - М.: Государственное научно-техническое издательство химической литературы, 1949.

  5. http://forum.xumuk.ru/(18.11.14)

  6. http://studopedia.ru/3_71762_potentsiometricheskoe-titrovanie.html/(16.11.14)

Просмотров работы: 5282