АНАЛИЗ И ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ УСТРОЙСТВ ПК (НА ПРИМЕРЕ МОНИТОРОВ) - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

АНАЛИЗ И ПРОГНОЗИРОВАНИЕ РАЗВИТИЯ УСТРОЙСТВ ПК (НА ПРИМЕРЕ МОНИТОРОВ)

Зеленов А.А. 1
1Балаковский Институт Техники, Технологии и Управления (филиал)
 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

Вторая половина ХХ ст. отличилась бурным развитием науки и техники. Важным достижением этого времени стало создание электронных вычислительных машин – компьютеров. Для визуализации работы компьютера было создано специальное устройство, которое выводило информацию на экран – монитор.

Его можно смело назвать самой важной частью персонального компьютера. С экраном монитора мы постоянно контактируем во время работы. От его размера и качества зависит, насколько будет комфортно нашим глазам. Монитор должен быть максимально безопасным для здоровья по уровню всевозможных излучений. Также он должен обеспечивать возможность комфортной работы, предоставляя в распоряжение пользователя качественное изображение.

НАЗНАЧЕНИЕ И ОСНОВНЫЕ ХАРАКТЕРИСТИКИ МОНИТОРОВ

Мониторы используются во всех сферах жизни. Словом, без этого устройства, наверное, невозможно было бы полноценное использование персональных компьютеров.

Монитор — конструктивно законченное устройство, предназначенное для визуального отображения информации.

Монитор бывает монохромным (т.е. двухцветным) и цветным. Монитор может работать в двух режимах: текстовом и графическом.

В текстовом режиме монитор (эго экран) условно делится на отдельные участки - знакоместа, чаще всего на двадцать пять строк по восемьдесят позиций. В каждое знакоместо может быть выведен один из двухсот пятидесяти шести заранее заданных символов - прописные и строчные латинские буквы или кириллица, цифры, специальные символы и псевдографика. Если монитор цветной, то каждому знакоместу можно задать определенный цвет фона и символа. Графический режим - предназначен для вывода на монитор графиков, рисунков и т.д. Кроме того, можно выводить и любые надписи с произвольным шрифтом и размером букв. В графическом режиме монитор, его экран состоит из точек (называются пикселями), каждая из которых может иметь свой цвет. Максимальное количество точек по вертикали и по горизонтали называется разрешающей способностью, которую имеет монитор в данном режиме. Также важным является количество цветов, с которыми можно одновременно работать.

Монитор имеет различные размеры экрана. Существуют 14-дюймовые, 17-дюймовые, 19 и 21-дюймовые мониторы. Данная цифра указывает размер экрана по диагонали. Второй важной характеристикой, которую имеет монитор, является размер пикселя (зерна): 0.25, 0.26, 0.28 и 0.31 мм. Чем меньше размер, тем лучше. Оптимальный по критерию цена/качество является размер 0.26 - 0.28 мм. Монитор с более крупными размерами зерна лучше не использовать, т.к. при работе сильно устают глаза.

ПРИНЦИП РАБОТЫ МОНИТОРОВ

  1. Рассмотрим принципы работы CRT-мониторов. CRT- или ЭЛТ-монитор имеет стеклянную трубку, внутри которой вакуум, т.е. весь воздух удален.

С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором. В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами.

Для создания изображения в CRT-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками.

Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. В цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому интересны.

Наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов. Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов.

  1. LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров.

Сегодня они достигли 17" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы.

  1. Работа плазменной панели основана на свечении люминофора под воздействием ультрафиолета. Панель плазменного дисплея состоит из огромного количества микроколб, заполненных специальным газом. При подаче напряжения на отдельную колбу газ ионизируется и излучает ультрафиолет. Ультрафиолет, попадая на люминофор, нанесенный на внутреннюю поверхность колбы, начинает светиться одним из трех цветов (RGB). В плазменных дисплеях отсутствует развертка. Именно по этой причине в отличие от электронно-лучевых мониторов плазменные панели не мерцают. Панель, состоящая из колб, наполненных газом, прошита вертикальными и горизонтальными электродами для подачи напряжения, причем с лицевой стороны электроды прозрачные. Переключением напряжения управляет специальный процессор.

ИСТОРИЯ СОЗДАНИЯ МОНИТОРОВ

Изначально мониторы были векторными, т.е. изображение в них создавалось непосредственным перемещением пучка электронов по требуемым координатам. В дальнейшем появились растровые дисплеи, что обусловило необходимость делить экран на пиксели. Следующим этапом стало создание мониторов, позволяющих выводить цветные изображения. Вместо одного пучка электронов теперь стало три – зеленый, синий и красный.

ТИПЫ МОНИТОРОВ

Мониторы бывают разные: ЭЛТ (электроно-лучевая трубка), ЖК (жидкокристаллические), плазменные, лазерные и т.д.

1. CRT Monitors

Сегодня самый распространенный тип мониторов - это CRT (Cathode Ray Tube)-мониторы. Как видно из названия, в основе всех подобных мониторов лежит катодно-лучевая трубка, но это дословный перевод, технически правильно говорить "электронно-лучевая трубка" (ЭЛТ). Используемая в этом типе мониторов технология была создана много лет назад и первоначально создавалась в качестве специального инструментария для измерения переменного тока, проще говоря, для осциллографа. Развитие этой технологии, применительно к созданию мониторов, за последние годы привело к производству все больших по размеру экранов с высоким качеством и при низкой стоимости. Сегодня найти в магазине 14" монитор очень сложно, а ведь года три-четыре назад это был стандарт. Сегодня стандартными являются 15" мониторы, и наблюдается явная тенденция в сторону 17" экранов. Скоро 17" мониторы станут стандартным устройством, особенно в свете существенного снижения цен на них, а на горизонте уже 19" мониторы и более.

Рассмотрим принципы работы CRT-мониторов. CRT- или ЭЛТ-монитор имеет стеклянную трубку, внутри которой вакуум, т.е. весь воздух удален. С фронтальной стороны внутренняя часть стекла трубки покрыта люминофором (Luminofor). В качестве люминофоров для цветных ЭЛТ используются довольно сложные составы на основе редкоземельных металлов - иттрия, эрбия и т.п. Люминофор - это вещество, которое испускает свет при бомбардировке его заряженными частицами. Заметим, что иногда люминофор называют фосфором, но это не верно, т.к. люминофор, используемый в покрытии CRT, ничего не имеет общего с фосфором. Более того, фосфор "светится" в результате взаимодействия с кислородом воздуха при окислении до P2O5 и мало по времени.

Для создания изображения в CRT-мониторе используется электронная пушка, которая испускает поток электронов сквозь металлическую маску или решетку на внутреннюю поверхность стеклянного экрана монитора, которая покрыта разноцветными люминофорными точками. Поток электронов на пути к фронтальной части трубки проходит через модулятор интенсивности и ускоряющую систему, работающие по принципу разности потенциалов. В результате, электроны приобретают большую энергию, часть из которой расходуется на свечение люминофора. Электроны попадают на люминофорный слой, после чего энергия электронов преобразуется в свет, т.е. поток электронов заставляет точки люминофора светиться. Эти светящиеся точки люминофора формируют изображение, которое вы видите на вашем мониторе.

Как правило, в цветном CRT-мониторе используются три электронные пушки, в отличие от одной пушки, применяемой в монохромных мониторах, которые сейчас практически не производятся и мало кому интересны.

Все мы знаем (а лично я из лекций по ЭССОИ в моём родном ТУСУРе) или слышали о том, что наши глаза реагируют на основные цвета: красный (Red), зеленый (Green) и синий (Blue) и на их комбинации, которые создают бесконечное число цветов.

Люминофорный слой, покрывающий фронтальную часть электронно-лучевой трубки, состоит из очень маленьких элементов. Эти люминофорные элементы воспроизводят основные цвета, фактически имеются три типа разноцветных частиц, чьи цвета соответствуют основным цветам RGB (отсюда и название группы из люминофорных элементов – триады).

Люминофор начинает светиться, как было сказано выше, под воздействием ускоренных электронов, которые создаются тремя электронными пушками. Каждая из трех пушек соответствует одному из основных цветов и посылает пучок электронов на различные частицы люминофор, чье свечение основными цветами с различной интенсивностью комбинируется, и, в результате, формируется изображение с требуемым цветом. Например, если активировать красную, зеленую и синюю люминофорные частицы, то их комбинация сформирует белый цвет.

Для управления электронно-лучевой трубкой необходима и управляющая электроника, качество которой во многом определяет и качество монитора. Кстати, именно разница в качестве управляющей электроники, создаваемой разными производителями, является одним из критериев, определяющих разницу между мониторами с одинаковой электронно-лучевой трубкой. Электронный луч, предназначенный для красных люминофорных элементов, не должен влиять на люминофор зеленого или синего цвета. Чтобы добиться такого действия используется специальная маска, чья структура зависит от типа кинескопов от разных производителей, обеспечивающая дискретность (растровость) изображения. ЭЛТ можно разбить на два класса - трехлучевые с дельтаобразным расположением электронных пушек и с планарным расположением электронных пушек. В этих трубках применяются щелевые и теневые маски, хотя правильнее сказать, что они все теневые. При этом трубки с планарным расположением электронных пушек еще называют кинескопами с самосведением лучей, так как воздействие магнитного поля Земли на три планарно расположенных луча практически одинаково, и при изменении положения трубки относительно поля Земли не требуется производить дополнительные регулировки.

2. LCD Monitors

LCD (Liquid Crystal Display, жидкокристаллические мониторы) сделаны из вещества, которое находится в жидком состоянии, но при этом обладает некоторыми свойствами, присущими кристаллическим телам. Фактически, это жидкости, обладающие анизотропией свойств (в частности, оптических), связанных с упорядоченностью в ориентации молекул. Жидкие кристаллы были открыты давно, но изначально они использовались для других целей. Молекулы жидких кристаллов под воздействием электричества могут изменять свою ориентацию и вследствие этого изменять свойства светового луча проходящего сквозь них. Основываясь на этом открытии и в результате дальнейших исследований, стало возможным обнаружить связь между повышением электрического напряжения и изменением ориентации молекул кристаллов для обеспечения создания изображения.

Первое свое применение жидкие кристаллы нашли в дисплеях для калькуляторов и в кварцевых часах, а затем их стали использовать в мониторах для портативных компьютеров. Сегодня, в результате прогресса в этой области, начинают получать все большее распространение LCD-мониторы для настольных компьютеров. Далее речь пойдет только о традиционных LCD-мониторах, так называемых Nematic LCD.

Экран LCD-монитора представляет собой массив маленьких сегментов (называемых пикселями), которые могут манипулироваться для отображения информации. LCD-монитор имеет несколько слоев, где ключевую роль играют две панели, сделанные из свободного от натрия и очень чистого стеклянного материала, называемого субстрат или подложка, которые собственно и содержат тонкий слой жидких кристаллов между собой. На панелях имеются бороздки, которые направляют кристаллы, сообщая им специальную ориентацию. Бороздки расположены таким образом, что они параллельны на каждой панели, но перпендикулярны между двумя панелями. Продольные бороздки получаются в результате размещения на стеклянной поверхности тонких пленок из прозрачного пластика, который затем специальным образом обрабатывается. Соприкасаясь с бороздками, молекулы в жидких кристаллах ориентируются одинаково во всех ячейках. Молекулы одной из разновидностей жидких кристаллов (нематиков) в отсутствии напряжения поворачивают вектор электрического (и магнитного) поля в такой световой волне на некоторый угол в плоскости, перпендикулярной оси распространения пучка. Нанесение бороздок на поверхность стекла позволяет обеспечить одинаковые повороты плоскости поляризации для всех ячеек.

Две панели расположены очень близко друг к другу. Жидкокристаллическая панель освещается источником света (в зависимости от того, где он расположен, жидкокристаллические панели работают на отражение или на прохождение света). Плоскость поляризации светового луча поворачивается на 90° при прохождении одной панели. При появлении электрического поля молекулы жидких кристаллов частично выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90 градусов.

Поворот плоскости поляризации светового луча незаметен для глаза, поэтому возникла необходимость добавить к стеклянным панелям еще два других слоя, представляющих собой поляризационные фильтры. Эти фильтры пропускают только ту компоненту светового пучка, у которой ось поляризации соответствует заданному. Поэтому при прохождении поляризатора пучок света будет ослаблен в зависимости от угла между его плоскостью поляризации и осью поляризатора.

При отсутствии напряжения ячейка прозрачна вот по какой причине: первый поляризатор пропускает только свет с соответствующим вектором поляризации. Благодаря жидким кристаллам вектор поляризации света поворачивается, и к моменту прохождения пучка ко второму поляризатору он уже повернут так, что проходит через второй поляризатор без проблем. В присутствии электрического поля поворота вектора поляризации происходит на меньший угол, тем самым второй поляризатор становится только частично прозрачным для излучения. Если разность потенциалов будет такой, что поворота плоскости поляризации в жидких кристаллах не произойдет совсем, то световой луч будет полностью поглощен вторым поляризатором, и экран при освещении сзади будет спереди казаться черным (лучи подсветки поглощаются в экране полностью).

Если расположить большое число электродов, которые создают разные электрические поля в отдельных местах экрана (ячейки), то появится возможность, при правильном управлении потенциалами этих электродов, отображать на экране буквы и другие элементы изображения. Электроды помещаются в прозрачный пластик и могут иметь любую форму. Технологические новшества позволили ограничить их размеры величиной маленькой точки, соответственно, на одной и той же площади экрана можно расположить большее число электродов, что увеличивает разрешение LCD-монитора и позволяет нам отображать даже сложные изображения в цвете.

Для вывода цветного изображения необходима подсветки монитора сзади, так, чтобы свет порождался в задней части LCD-дисплея. Это необходимо для того, чтобы можно было наблюдать изображение хорошего качества, даже если окружающая среда не является светлой. Цвет получается в результате использования трех фильтров, которые выделяют из излучения источника белого света три основные компоненты. Комбинация трех основных цветов для каждой точки или пикселя экрана дает возможность воспроизвести любой цвет.

Вообще-то, в случае с цветом есть несколько возможностей: можно сделать несколько фильтров друг за другом (что приводит к малой доле проходящего излучения), можно воспользоваться свойством жидко-кристаллической ячейки - при изменении напряженности электрического поля угол поворота плоскости поляризации излучения изменяется по-разному для компонент света с разной длиной волны. Эту особенность можно использовать для того, чтобы отражать (или поглощать) излучение заданной длины волны (проблема состоит в необходимости точно и быстро изменять напряжение). Какой именно механизм используется, зависит от конкретного производителя. Первый метод проще, второй эффективнее.

Первые LCD-дисплеи были очень маленькими, около 8 дюймов, в то время как сегодня они достигли 15" размеров для использования в ноутбуках, а для настольных компьютеров производятся 19" и более LCD-мониторы. Вслед за увеличением размеров следует увеличение разрешения, следствием чего является появление новых проблем, которые были решены с помощью появившихся специальных технологий, все это мы опишем далее. Одной из первых проблем была необходимость стандарта в определении качества отображения при высоких разрешениях. Первым шагом на пути к цели было увеличение угла поворота плоскости поляризации света в кристаллах с 90° до 270° с помощью STN технологии.

3. Газоразрядные или плазменные панели (PDP).

Принцип действия плазменной панели основан на свечении специальных люминофоров (фосфоресцирующие вещества) при воздействии на них ультрафиолетового излучения. В свою очередь это излучение возникает при электрическом разряде в среде сильно разреженного газа. При таком разряде между электродами с управляющим напряжением образуется проводящий «шнур», состоящий из ионизированных молекул газа (плазмы) (аналогичный принцип работы реализован в лампах дневного света - газ в колбе (стеклянной трубе) начинает светиться при пропускании напряжения через него).

Поэтому-то газоразрядные панели, работающие на этом принципе, и получили название «газоразрядных» или «плазменных» панелей. Подавая управляющие сигналы на вертикальные и горизонтальные проводники, нанесенные на внутренние поверхности стекол панели, схема управления панели осуществляет соответственно «строчную» и «кадровую» развертку растра телевизионного изображения. При этом яркость каждого элемента изображения определяется временем свечения соответствующей «ячейки» плазменной панели: самые яркие элементы «горят» постоянно, а в наиболее темных местах они вовсе не «поджигаются». Светлые участки изображения на PDP (Plasma Display Panel) светятся ровным светом, и поэтому изображение абсолютно не мерцает, чем выгодно отличается от «картинки» на экране традиционных кинескопов.

Плазменные панели создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом. Все пространство разделяется на множество пикселей (элементов изображения), каждый из которых состоит из трех подпикселей, соответствующих одному из трех цветов (красный, зеленый и синий). Комбинируя эти три цвета можно воспроизвести любой другой цвет. В каждом подпикселе расположены маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения возникает электрический разряд. При взаимодействии плазмы газового разряда с частицами фосфора в каждом подпикселе возникает излучение соответствующего цвета (красного, зеленого или синего). Работа каждого подпикселя полностью контролируется электроникой, что позволяет каждому пикселю воспроизводить до 16 млн. различных цветов.

В настоящее время для создания плоских дисплеев (Flat Panel Display, FPD) используются различные технологии и решения, хотя на рынке до сих пор доминируют жидкокристаллические экраны. Как известно, технологии, которые применяются при создании современных дисплеев, условно могут быть разделены на две группы. К первой относятся устройства, основанные на излучении света, например традиционные, выполненные на базе электронно-лучевых трубок (ЭЛТ), и плазменные дисплеи PDP (Plasma Display Panel). Во вторую группу входят устройства трансляционного типа, в том числе и ЖК-мониторы. Устройства обеих групп имеют вполне определенные достоинства и недостатки. Если же говорить о будущем, то перспективные решения в области создания современных дисплеев действительно часто совмещают в себе особенности обеих технологий.

Так, сегодня большое внимание уделяется созданию дисплеев на базе автоэлектронной эмиссии (Field Emisson Display, FED). В отличие от ЖК-экранов, которые работают с отраженным светом, FED-панели сами генерируют свет, что роднит их с экранами на базе ЭЛТ и плазменными дисплеями. Однако если у ЭЛТ всего три электронные пушки, то в FED-устройствах для каждого пиксела предназначен свой электрод, благодаря чему толщина панели не превышает нескольких миллиметров. При этом каждый пиксел управляется напрямую, как и в ЖК-дисплеях с активной матрицей. Свою родословную FED-устройства ведут из разработок середины 1990-х годов, когда инженеры пытались создать по-настоящему плоский кинескоп.

ОСНОВНЫЕ ФИРМЫ ПРОИЗВОДИТЕЛИ

Сегодня производством мониторов для компьютеров занимается большое количество компаний. Неплохо зарекомендовали себя такие марки, как Samsung, Acer, Apple, BenQ, HP, LG, Dell.

Мониторы Samsung хорошо подходят для использования дома и в офисе. Под этой маркой производится огромный ассортимент моделей, существенно отличающихся друг от друга. Выбирая среди мониторов, выпущенных под брендом Samsung, мы имеем возможность рассматривать модели с диагоналями от 15 до 40 (и больше) дюймов. Одной из образцовых моделей является монитор Samsung T200, имеющий время отклика, равное 2 мс.

Девайсы Asus считаются лучшими в области передачи цвета. При их разработке учитываются все нормы экономичности и эргономичности. Монитор Asus не содержит в себе какие-либо тяжелые металлы, благодаря чему обеспечивается эффективное использование энергосберегающих элементов.

Продукция Acer характеризуется необычайной функциональностью. Эти мониторы наверняка придутся по душе любителям динамических игр и пользователям мультимедийных приложений.

ПРОГНОЗ РАЗВИТИЯ МОНИТОРОВ

Прогресс не стоит на месте, и уже на замену ЖК – мониторам идут новые мониторы на основе органических светодиодов (OLED), которые, как предполагается, будут значительно дешевле и намного удобнее в использовании, чем ЖК - мониторы. Кроме этого ведутся разработки по созданию доступных 3D – мониторов.

Просмотров работы: 2907