VII Международная студенческая электронная научная конференция
«Студенческий научный форум» - 2015
 
     

АРХИВ "Студенческий научный форум"

2009

2010

2011

2012

2013

2014

2015

УСЛОВИЯ ОБРАЗОВАНИЯ ДВУХ ГЕНЕРАЦИЙ ФЛЮОРИТА НА МЕСТОРОЖДЕНИИ АКЧАТАУ, КАЗАХСТАН
Борисов М.К., Первушкин С.С.
Текст научной работы размещён без изображений и формул.
Полная версия научной работы доступна в формате PDF


Трудно назвать минерал, обладающий такой разнообразной окраской, как флюорит. «Все цвета радуги, все краски солнечного спектра сменяют здесь друг друга», – эти слова А.Е. Ферсмана о самоцветах с полным основанием можно отнести к флюориту, одному из «классических» сквозных минералов, проходящих через все основные процессы минералообразования в земной коре [1]. Акчатау – это высокотемпературное гидротермальное вольфрам-молибденовое месторождение, расположенное в Карагадинской области республики Казахстан. Целью работы было изучение природы окраски флюорита для уточнения генетических особенностей и разработки поисково-оценочных критериев.

Объект исследования. Флюорит в пределах месторождения является «сквозным» минералом и встречается во всех рудных зонах. Рассматриваемый образец выглядит как друзовидное страстание кристаллов октаэдрического облика {111} в комбинации с ромбододекаэдрами {110} c хорошо выраженной паркетной структурой грани. Размер кристаллов колеблется от 4 до 6 мм. В срастание с флюоритом кристаллы пирита кубического облика – {100} и призматические кристаллы α-кварца, который образуется простыми формами (гексагональная дипирамида второго рода {hh2hl}, гексагональная призма первого рода {1010}, ромбоэдр {h0hl}). Флюорит представлен двумя генерациями, которые отличаются цветовыми характеристиками и, по-видимому, примесным составом. Флюорит в исследуемом образце нарастает на подложку кварца и в пределах одного кристалла имеет четкую цветовую границу: от яблочно-зеленого цвета в центре и основной части кристаллов – первая генерация; до тонкой оболочки чернильно-фиолетового цвета (параморфозы) флюорита второй генерации (рис. 1).

Методика исследования. Исследования проводились на базе кафедры ГРПИ ИПР ТПУ с использованием спектрофотометра HORIBA Scintific ЧПЕ-7200 X-RAY Analitical Microscope. Для исследования нами были получены пластинки флюорита зеленого и фиолетового цвета. С помощью рентген-флюорисцентного анализа мы получили дифракционную картину, оценить химический состав пластинок флюорита и, возможно увидеть различие 2-х генераций флюорита.

 

Рис. 1. Сросток кристаллов флюорита, пирита, кварца, месторождение Акчатау, Казахстан

Флюорит разного цвета имеет ряд характерных отличительных признаков по микроэлементному составу. Так, по содержанию хрома и иридия в разноокрашенных флюоритах наблюдается сильные вариации. Особенностью флюорита является высокая концентрация «базит-ультрабазитовых» элементов – хрома, иридия, стронция. К примеру, количество хрома варьирует от 0,2 до 17,9 мас. %, при этом отчетливо наблюдаются повышенные концентрации хрома в яблочно-зеленой разновидности флюорита. Иридия – от 0,26 до 34,21 мас. %, стронция от 0,16 до 0,5 мас. % (рис. 2, 3).

В зависимости от цветности минерала, количество иридия варьирует, но на окраску минерала это, по-видимому, не влияет. В тоже время, для стронция такая зависимость не наблюдается, однако, геохимически стронций связан с кальциевыми минералами, к которым и относится флюорит. Обогащение флюорита «базит-ультрабазитовыми» элементами (Cr, Ir), по всей видимости, связано с тем, что на продуктивные жилы влияют вмещающие базитовые породы.

 

№ п.п.

Ca

F

Cr

Sr

Y

Ir

Fe

Ce

1

50,42

48,7

0,2

0,01

-

0,67

-

-

2

50,68

48,7

0,3

0,03

0,02

0,26

-

-

3

50,82

48,7

0,16

0,03

0,04

0,26

-

-

4

51,2

48,7

0

0,04

-

0,06

-

-

5

-

48,7

17,09

-

-

34,21

-

-

Рис. 2. Особенности распределения элементов (мас. %) в яблочно-зеленом флюрите

 

№ п.п.

Ca

F

Cr

Sr

Y

Ir

Fe

Ce

1

48,28

48,7

-

0,18

-

-

0,55

0,25

2

50,66

48,7

-

0,16

-

-

0,1

0,39

3

42,06

48,7

-

0,26

-

-

1,84

1,76

4

49,06

48,7

-

0,22

-

-

0,93

1,1

5

47,73

48,7

-

0,5

0,1

-

0,6

0,49

Рис. 3. Особенности распределения элементов (мас. %) в чернильно-фиолетовом флюорите

Большую информативность для типоморфизма флюорита имеют содержания редкоземельных элементов. Изучение распределения редких земель во флюорите проводится уже давно, известны даже сводки по данному вопросу [2, 3]. К сожалению, данный метод исследования не позволяет оценить содержание этих элементов в изучаемых образцах, и эта работа будет продолжена с использованием уже других методик исследования вещества, например, термобарогеохимия, нейтронно-активационный метод. Однако по литературным данным, можно судить, что различные генерации флюорита, как правило, отличаются трендами распределения РЗЭ для разных генераций флюорита. Подобное явление уже описывалось для некоторых месторождений Казахстана [4].

Из всего этого можно сделать следующие выводы:

  • типоморфизм флюорита из месторождения Акчатау характеризуется привносом «базит-ультрабазитовых» компонентов в микроэлементном составе минерала;

  • распределение во флюоритах позволило выделить два геохимических типа, связанных со стадийностью кристаллизации флюорита и изменение цвета от зеленого до фиолетового выраженного снижением концентрации, в первую очередь хрома и, вероятно, редко-земельных элементов.

Выводы. Флюорит в пределах месторождения Акчатау во всех изученных парагенезисах является самым поздним минералом. Во всех образцах минерал характеризуется геохимическими чертами, унаследованными от пород в которых он кристаллизовался. При этом для всех типов флюорита типоморфным признаком является обогащенность минерала элементами базит-гипербазитовой формации. По всей видимости, это объясняется тем, что на заключительной стадии формирования всех минеральных парагенезисов в процессе кристаллизации, стали участвовать флюиды из вмещающих пород, которые в том числе представлены гипербазитами. Отложение рудной вольфрам-молибденовой минерализации в парагенезисе с яблочно-зеленым и фиолетовым флюоритом происходило в щелочных или слабо щелочных условиях, т.к. в кристаллизации принимали участие флюиды из вмещающих гипербазитов. Ранее считалось [5, 6], что повышенная активность фтора происходит в относительно кислых растворах. Это обусловлено изменением состава постмагматических растворов в связи с выщелачиванием при калиевом метасоматозе из подстилающих пород извести, глинозема и других компонентов с образованием метасоматических зон выполнением трещин самым поздним минералом – флюоритом [7].

Литература

  1. Красилъщикова О. А., Таращан А. Н., Платонов А. Н. Окраска и люминесценция природного флюорита. // Институт геохимии и физики минералов. – 1986. – Стр. 83.

  2. Ганзеев А.А., Сотсков Ю.П. Редкоземельные элементы во флюорите различного генезиса // Геохимия, 1976. – № 3. – С. 390–396.

  3. Файзиев А.Р., Коплус А.В. Редкие земли во флюорите различного генезиса // Записки ВМО, 1992. – Ч. 121. – № 1. – С. 79–88.

  4. Плескова М.А. Редкие земли во флюорите из пегматитовых тел Центрального Казахстана // Труды Минер. музея, 1971. – Вып. 20. – С. 128–132.

  5. Куприянова И.И., Кукушкина О.А. Типоморфизм минералов и геолого-генетические модели эндогенных редкометальных месторождений // Минеральное сырье. – № 12. – М.: ВИМС, 2001. – 145 с.

  6. Куприянова И.И., Кукушкина О.А., Шпанов Е.П., Скоробогатова Н.В. Типоморфизм минералов и геологические коллекции как вещественные модели месторождений бериллия // Типоморфные минералы и минеральные ассоциации – индикаторы масштабности природных и техногенных месторождений и качества руд: (Годичное собрание РМО). Мат-лы Всерос. науч. конф. Екатеринбург: ИГГ УрО РАН, 2008. – С. 60–63.

  7. Шерстюк А.И. О последовательности минералообразования при формировании слюдитовых комплексов грейзеновой формации // Тр. Института геологии и геохимии УФАН СССР. – Вып. 86. – Свердловск: УФАН СССР, 1970. – С. 114–119.