СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВА РАЗВИТИЯ В СФЕРЕ СОЗДАНИЯ СВЕРХМОЩНЫХ КОМПЬЮТЕРОВ - Студенческий научный форум

VII Международная студенческая научная конференция Студенческий научный форум - 2015

СОВРЕМЕННОЕ СОСТОЯНИЕ И ПЕРСПЕКТИВА РАЗВИТИЯ В СФЕРЕ СОЗДАНИЯ СВЕРХМОЩНЫХ КОМПЬЮТЕРОВ

 Комментарии
Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

С момента появления первых компьютеров одной из основных проблем, стоящих перед разработчиками, была производительность вычислительной системы. За время развития компьютерной индустрии производительность процессора стремительно возрастала, однако появление все более изощренного программного обеспечения, рост числа пользователей и расширение сферы приложения вычислительных систем предъявляют новые требования к мощности используемой техники, что и привело к появлению суперкомпьютеров. Что же такое суперкомпьютеры, и зачем они нужны?

В принципе, суперкомпьютер — это обычная вычислительная система, позволяющая производить сложные расчеты за более короткие промежутки времени. О чем собственно и говорит приставка «Супер». Любая компьютерная система состоит из трех основных компонентов - центрального процессора, то есть счетного устройства, блока памяти и вторичной системы хранения информации (к примеру, в виде дисков или лент). Ключевое значение имеют не только технические параметры каждого из этих элементов, но и пропускная способность каналов, связывающих их друг с другом и с терминалами потребителей. Одна из заповедей «Крей Рисерч» (первой компании, создавшей подобный компьютер) гласит: «Быстродействие всей системы не превышает скорости самой медленнодействующей ее части». Важным показателем производительности компьютера является степень его быстродействия. Она измеряется так называемыми флопами - от английского сокращения, обозначающего количество операций с числами, представленными в форме с плавающей запятой, в секунду. То есть за основу берется подсчет - сколько наиболее сложных расчетов машина может выполнить за один миг.

А зачем вообще нужны суперкомпьютеры? Раздвижение границ человеческого знания всегда опиралось на два краеугольных камня, которые не могут, существовать друг без друга, - теорию и опыт. Однако теперь ученые сталкиваются с тем, что многие испытания стали практически невозможными - в некоторых случаях из-за своих масштабов, в других - дороговизны или опасности для здоровья и жизни людей. Тут-то и приходят на помощь мощные компьютеры. Позволяя экспериментировать с электронными моделями реальной действительности, они становятся «третьей опорой» современной науки и производства.

Прошло время, когда создатели суперкомпьютеров стремились обеспечить максимальную производительность любой ценой. Специальные процессоры, дорогостоящая сверхбыстрая память, нестандартное периферийное оборудование - все это обходилось заказчикам в круглую сумму. Приобретали суперкомпьютеры либо предприятия ВПК, либо крупные университеты. И те, и другие делали это, как правило, за государственный счет. Окончание "холодной войны" и последовавшее за ним сокращение ассигнований на военные и околовоенные нужды нанесли серьезный удар по производителям суперкомпьютеров. Большинство из них были поглощены изготовителями менее производительной, но более доступной и ходовой вычислительной техники. Впрочем, у этих слияний были и технологические предпосылки - быстродействие серийно выпускаемых микропроцессоров постоянно росло, и производители суперкомпьютеров быстро переориентировались на них, что позволило существенно сократить общую стоимость разработки. Основной упор стал делаться на увеличение числа процессоров и повышение степени параллелизма программ.

  1. Определение понятия суперкомпьютер

Суперкомпьютер - вычислительная машина, значительно превосходящая по своим техническим параметрам большинство существующих компьютеров. Как правило, современные суперкомпьютеры представляют собой большое число высокопроизводительных серверных компьютеров, соединённых друг с другом локальной высокоскоростной магистралью для достижения максимальной производительности в рамках подхода распараллеливания вычислительной задачи. [1]

Определение понятия «суперкомпьютер» не раз было предметом многочисленных споров и дискуссий.

Чаще всего авторство термина приписывается Джорджу Майклу (George Anthony Michael) и Сиднею Фернбачу (Sidney Fernbach), в конце 60-х годов XX века работавшим в Ливерморской национальной лаборатории, и компании CDC. Тем не менее, известен тот факт, что ещё в1920 году газета New York World рассказывала о «супервычислениях», выполняемых при помощи табулятора IBM, собранного по заказу Колумбийского университета.

В общеупотребительный лексикон термин «суперкомпьютер» вошёл благодаря распространённости компьютерных систем Сеймура Крэя, таких как, CDC 6600, CDC 7600, Cray-1, Cray-2 и Cray-4.[1] Сеймур Крэй разрабатывал вычислительные машины, которые по сути становились основными вычислительными средствами правительственных, промышленных и академических научно-технических проектов США с середины 60-х годов до 1996года. Не случайно в то время одним из популярных определений суперкомпьютера было следующее: — «любой компьютер, который создал Сеймур Крэй». Сам Крэй никогда не называл свои детища суперкомпьютерами, предпочитая использовать вместо этого обычное название «компьютер». [1]

Компьютерные системы Крэя удерживались на вершине рынка в течение 5 лет с 1985 по 1990 годы. 80-е годы XX века охарактеризовались появлением множества небольших конкурирующих компаний, занимающихся созданием высокопроизводительных компьютеров, однако к середине 90-хбольшинство из них оставили эту сферу деятельности, что даже заставило обозревателей заговорить о «крахе рынка суперкомпьютеров». На сегодняшний день суперкомпьютеры являются уникальными системами, создаваемыми «традиционными» игроками компьютерного рынка, такими как IBM, Hewlett-Packard, NECи другими, которые приобрели множество ранних компаний, вместе с их опытом и технологиями. Компания Crayпо-прежнему занимает достойное место в ряду производителей суперкомпьютерной техники. [3]

Из-за большой гибкости самого термина до сих пор распространены довольно нечёткие представления о понятии «суперкомпьютер». Шутливая классификация Гордона Белла и Дона Нельсона, разработанная приблизительно в 1989году, предлагала считать суперкомпьютером любой компьютер, весящий более тонны. Современные суперкомпьютеры действительно весят более 1 тонны, однако далеко не каждый тяжёлый компьютер достоин чести считаться суперкомпьютером. В общем случае, суперкомпьютер — это компьютер значительно более мощный, чем доступные для большинства пользователей машины. При этом скорость технического прогресса сегодня такова, что нынешний лидер легко может стать завтрашним аутсайдером.

Архитектура также не может считаться признаком принадлежности к классу суперкомпьютеров. Ранние компьютеры CDC были обычными машинами, всего лишь оснащёнными быстрыми для своего времени скалярными процессорами, скорость работы которых была в несколько десятков раз выше, чем у компьютеров, предлагаемых другими компаниями.

Большинство суперкомпьютеров 70-х оснащались векторными процессорами, а к началу и середине 80-хнебольшое число (от 4 до 16) параллельно работающих векторных процессоров практически стало стандартным суперкомпьютерным решением. Конец 80-х и начало 90-хгодов охарактеризовались сменой магистрального направления развития суперкомпьютеров от векторно-конвейерной обработки к большому и сверхбольшому числу параллельно соединённых скалярных процессоров.

Массово-параллельные системы стали объединять в себе сотни и даже тысячи отдельных процессорных элементов, причём ими могли служить не только специально разработанные, но и общеизвестные и доступные в свободной продаже процессоры. Большинство массивно-параллельных компьютеров создавалось на основе мощных процессоров с архитектурой RISC, наподобие PowerPC или PA-RISC.

В конце 90-хгодов высокая стоимость специализированных суперкомпьютерных решений и нарастающая потребность разных слоёв общества в доступных вычислительных ресурсах привели к широкому распространению компьютерных кластеров. Эти системы характеризует использование отдельных узлов на основе дешёвых и широко доступных компьютерных комплектующих для серверов и персональных компьютеров и объединённых при помощи мощных коммуникационных систем и специализированных программно-аппаратных решений. Несмотря на кажущуюся простоту, кластеры довольно быстро заняли достаточно большой сегмент суперкомпьютерного рынка, обеспечивая высочайшую производительность при минимальной стоимости решений. [3]

В настоящее время суперкомпьютерами принято называть компьютеры с огромной вычислительной мощностью. Такие машины используются для работы с приложениями, требующими наиболее интенсивных вычислений, что в том числе отличает их от серверов и мэйнфреймов— компьютеров с высокой общей производительностью, призванных решать типовые задачи (например, обслуживание больших баз данных или одновременная работа с множеством пользователей).

Иногда суперкомпьютеры используются для работы с одним-единственным приложением, использующим всю память и все процессоры системы, в других случаях они обеспечивают выполнение большого числа разнообразных приложений.

2. Производительность суперкомпьютеров

Производительность суперкомпьютеров чаще всего оценивается и выражается в количестве операций с плавающей точкой в секунду(FLOPS). Это связано с тем, что задачи численного моделирования, под которые и создаются суперкомпьютеры, чаще всего требуют вычислений, связанных с вещественными числами с высокой степенью точности, а не целыми числами. Поэтому для суперкомпьютеров неприменима мера быстродействия обычных компьютерных систем - количество миллионов операций в секунду(MIPS). При всей своей неоднозначности и приблизительности, оценка в флопсах позволяет легко сравнивать суперкомпьютерные системы друг с другом, опираясь на объективный критерий. [3]

Первые суперкомпьютеры имели производительность порядка 1 кфлопс, т.е. 1000 операций с плавающей точкой в секунду. Компьютер CDC 6600, имевший производительность в 1 миллион флопсов (1 Мфлопс) был создан в 1964 году. Планка в 1 миллиард флопс (1 Гигафлопс) была преодолена суперкомпьютером Cray-2в 1985 с большим запасом (1.9 Гигафлопс). Граница в 1 триллион флопс (1 Тфлопс) была достигнута в 1996 году суперкомпьютером ASCI Red. Рубеж 1 квадриллион флопс (1 Пфлопс) был взят в 2008 году суперкомпьютером IBM Roadrunner. Сейчас ведутся работы по созданию к 2016 году экзафлопсных компьютеров, способных выполнять 1 квинтиллион операций с плавающей точкой в секунду.

  1. Программное обеспечение суперкомпьютеров

Наиболее распространёнными программными средствами суперкомпьютеров, также как и параллельных или распределённых компьютерных систем являются интерфейсы программирования приложений (API) на основе MPI и PVM, и решения на базе открытого программного обеспечения, наподобие Beowulf и openMosix, позволяющего создавать виртуальные суперкомпьютеры даже на базе обыкновенных рабочих станций и персональных компьютеров. Для быстрого подключения новых вычислительных узлов в состав узкоспециализированных кластеров применяются технологии наподобие ZeroConf. Примером может служить реализация рендеринга в программном обеспечении Shake, распространяемом компанией Apple. Для объединения ресурсов компьютеров, выполняющих программу Shake, достаточно разместить их в общем сегменте локальной вычислительной сети. [2]

В настоящее время границы между суперкомпьютерным и общеупотребимым программным обеспечением сильно размыты и продолжают размываться ещё более, вместе с проникновением технологий параллелизации и многоядерности в процессорные устройства персональных компьютеров и рабочих станций. Исключительно суперкомпьютерным программным обеспечением сегодня можно назвать лишь специализированные программные средства для управления и мониторинга конкретных типов компьютеров, а также уникальные программные среды, создаваемые в вычислительных центрах под «собственные», уникальные конфигурации суперкомпьютерных систем.

  1. Применение суперкомпьютеров

Суперкомпьютеры используются во всех сферах, где для решения задачи применяется численное моделирование; там, где требуется огромный объем сложных вычислений, обработка большого количества данных в реальном времени, или решение задачи может быть найдено простым перебором множества значений множества исходных параметров (см. Метод Монте-Карло).

Совершенствование методов численного моделирования происходило одновременно с совершенствованием вычислительных машин. Чем сложнее были задачи, тем выше были требования к создаваемым машинам, чем быстрее были машины, тем сложнее были задачи, которые на них можно было решать. Поначалу суперкомпьютеры применялись почти исключительно для оборонных задач: расчеты по ядерному и термоядерному оружию, ядерным реакторам. Потом по мере совершенствования математического аппарата численного моделирования, развития знаний в других сферах науки суперкомпьютеры стали применяться и в "мирных" расчетах, создавая новые научные дисциплины, как то численный прогноз погоды, вычислительная биология и медицина, вычислительная химия, вычислительная гидродинамика, вычислительная лингвистика и проч., где достижения информатики сливались с достижениями прикладной науки.

Ниже приведен далеко не полный список областей применения суперкомпьютеров:

  • Математические проблемы:

    • Криптография

    • Статистические расчеты

  • Физика высоких энергий:

    • процессы внутри атомного ядра, физика плазмы, научный анализ данных экспериментов, проведенных на ускорителях

    • разработка и совершенствование атомного и термоядерного оружия, управление ядерным арсеналом, моделирование ядерных испытаний

    • моделирование жизненного цикла ядерных топливных элементов, проекты ядерных и термоядерных реакторов

  • Наука о Земле:

    • прогноз погоды, состояния морей и океанов

    • предсказание климатических изменений и их последствий

    • исследование процессов, происходящих в земной коре, для предсказания землетрясений и извержений вулканов

    • анализ данных геологической разведки для поиска и оценки нефтяных и газовых месторождений, моделирование процесса выработки месторождений

    • моделирование растекания рек во время паводка, растекания нефти во время аварий

  • Вычислительная биология: фолдинг белка, расшифровка ДНК

  • Вычислительная химия и медицина: поиск и создание новых лекарств

  • Физика:

    • газодинамика: турбины электростанций, горение топлива, аэродинамические процессы для создания совершенных форм крыла, фюзеляжей самолетов, ракет, кузовов автомобилей

    • гидродинамика: течение жидкостей по трубам, по руслам рек

    • материаловедение: создание новых материалов с заданными свойствами, анализ распределения динамических нагрузок в конструкциях, моделирование крэш-тестов при конструировании автомобилей [2]

В настоящее время суперкомпьютеры установлены, по большей части, в крупнейших университетах, научных учреждениях и секретных ведомствах, которые не участвуют в рейтингах типа Top500 и не распространяются о своих системах. Установка суперкомпьютеров осуществляется за счёт государства, при государственной поддержке, то есть, на деньги налогоплательщиков. А нужны ли российскому бизнесу суперкомпьютеры? Зачем, например, заводу АвтоВАЗ рассчитывать точную аэродинамику своих автомобилей, когда можно просто попросить 75 миллиардов рублей у государства? Зачем РЖД принимать участие в расчёте оптимизации колесной пары, если можно просто повысить тарифы за проезд? Основные заказчики вычислений на суперкомпьютерах - нефтяные компании, занимающиеся поиском и разработкой новых месторождений. Но даже помимо них, основные технические расчеты направлены на повышение эффективности уже существующих моделей. Например, на снижение аэродинамического сопротивления фюзеляжа самолёта, кузова автомобиля. Текстильная промышленность так же использует суперкомпьютеры для расчета своих моделей одежды. Иностранные компании даже расчет формы и материалов памперсов проводят на суперкомпьютерах.

Приятно, что Россия стала заметным игроком на суперкомпьютерном рынке. Но если задачи, использующие высокопроизводительные вычисления и суперкомпьютеры будут ограничиваться интересами монополий и предприятиями, работающими исключительно на внутреннем рынке, то о каком развитии может идти речь? Использование суперкомпьютеров в научных сферах позволило приблизиться к моделированию систем на атомарном уровне. Уже доступны квантово-механические расчеты систем из сотен тысяч атомов. Моделирование становится незаменимым инструментом при проектировании наносистем с необходимыми свойствами. Любые достижения в области нанотехнологий недоступны без вычислительной мощности суперкомпьютеров, просто потому, что многие процессы нельзя замерить - их можно только смоделировать в виртуальном пространстве. [2]

Тем не менее, почти за 50 лет существования суперкомпьютеров, человечество не победило старость, не нашло лекарство от многих смертельных болезней, не нашло замену бензина, и даже не научилось противодействовать таким природным явлениям, как торнадо, цунами или землетрясение. Чтобы ощутить все прелести ноутбука или телефона - достаточно выйти с ним из дома. А чтобы понять полезность суперкомпьютера, должны пройти годы. И пока вопрос с суперкомпьютерами и HPC будет ставиться "как внедрить суперкомпьютер в производство или отрасль", они бесполезны. Но истинная выгода от использования суперкомпьютеров раскроется, когда вопрос будет ставиться "какие наши задачи мы можем решить с помощью суперкомпьютеров"? [5]

Заключение

Еще 10–15 лет назад суперкомпьютеры были чем-то вроде элитарного штучного инструмента, доступного в основном ученым из засекреченных ядерных центров и криптоаналитикам спецслужб. Однако развитие аппаратных и программных средств сверхвысокой производительности позволило освоить промышленный выпуск этих машин, а число их пользователей в настоящее время достигает десятков тысяч. Фактически, в наши дни весь мир переживает подлинный бум суперкомпьютерных проектов, результатами которых активно пользуются не только такие традиционные потребители высоких технологий, как аэрокосмическая, автомобильная, судостроительная и радиоэлектронная отрасли промышленности, но и важнейшие области современных научных знаний.

Список используемых источников
  •  
    1. Электронная энциклопедия. [Электронный ресурс]. Код доступа: http://ru.wikipedia.org

    2. Суперкомпьютеры. [Электронный ресурс]. Код доступа: http://supercomputers.ru /

    3. Последние новости из мира современных технологий. [Электронный ресурс]. Код доступа: http:// hi-tech.mail.ru.

    4. Иностранное онлайн-издание современных технологий. wired.com -

    5. - Компьютерная техника мира. [Электронный ресурс]. Код доступа: http:// gizmodo.com

Просмотров работы: 5153